
GetMobile    December 2020 | Volume 24, Issue 416 17December 2020 | Volume 24, Issue 4   GetMobile

[MOBILE PLATFORMS]

Ph
ot

o,
 is

to
ck

ph
ot

o.
co

m
 

Shane Clark, Kyle Usbeck*, David Diller and 
Richard E. Schantz Raytheon BBN Technologies, Cambridge, Massachusetts
* Participated in this research while employed at Raytheon BBN Technologies

Editor: Shadi Noghabi

A Framework and Practical  
Deployment of Heterogeneous 
Unmanned System Swarms

CCAST: 



GetMobile    December 2020 | Volume 24, Issue 418 19December 2020 | Volume 24, Issue 4   GetMobile

[MOBILE PLATFORMS] [MOBILE PLATFORMS]

recent exercise successfully engaged up to  
60 heterogeneous, air and ground platforms 
in mission execution.

By leveraging and combining emerging 
technologies in swarm autonomy and 
human-swarm teaming, the program and 
project seek to enable rapid development, 
evaluation, and deployment of leap-ahead 
capabilities. 

RELATED WORK
Drone swarms are a topic of much current 
research and experimentation, but it is a 
relatively new area and lacks consensus 
around established technology or best 
practices. There are many dimensions of 
related work encompassing CCAST. We 
briefly summarize a few prominent ones 
for perspective on our current platform, 
capabilities, and experimental results.

At the platform level, we are creating 
a distributed system for organizing and 
controlling a large scale, coordinated 
collection of heterogeneous drones, 
including air and ground platforms intended 
to accomplish complex, multi-dimensional 
and multi-phase missions. Aspirations 
for large scale are multiple hundreds, in 
deliberate incremental steps (recently about 
75 coordinated vehicles). That degree of 
scale by itself presents numerous choices 
and challenges and mandates new solutions 
over single drone capabilities in areas such 
as plan decomposition, coordination and 
communication in close and sparse mobile 
operations, launch and flight logistics, and 

dynamic failure management. Deconfliction, 
coordination and dynamic failure 
management over fast moving independent 
platforms obsoletes the solutions offered 
for single and small drone configurations. 
Prior related work had fewer platforms [4],  
a single coordinated, non-reactive objective 
[6], or staged laboratory experiments with 
less capable platforms [8]. Beyond the scale 
and scope of the end mission, our integration 
and coordination software represents 
a distributed middleware dynamically 
incorporating a multitude of services for 
organizing, selecting, communicating, 
monitoring, and coordinating individual 
platforms into a cohesive whole. We share 
similar objectives to other emerging swarm 
software frameworks, for example [9] 
and [10]. These platforms use different 
approaches to establish a common, reusable 
middleware framework, focused on different 
visions for applications and uses. However, 
ours is the first to specifically focus on 
contributions to harnessing the power of 
very large-scale swarms.

At higher levels, our platform 
incorporates functions and services enabling 
complex, large scale, coordinated missions, 
including planning, group communication, 
obstacle avoidance, and contingency 
handling. There is much ongoing work in 
these subareas complementary to services 
in our platform, for example [11]. Much 
of this work is theoretical and focused on 
near-optimal outcomes under selected 
constraints. Our services work is focused on 
demonstrating the utility of simple forms 
that are operationally capable of supporting 
our large-scale experimentation. It includes 
companion work on interfaces allowing 
a single mission commander to provide 
oversight of a semi-autonomous mission at 
very high levels of abstraction [18].

CCAST INTEGRATED  
CONCEPT AND DESIGN
System Design
Designing a control framework to manage a 
large number of autonomous, mobile agents 
in complex urban environments requires 
careful consideration and balancing of the 
human, computational, and networking 
constraints inherent in live hardware testing.

1) Human-facing design
All swarm tasking in CCAST currently 
originates from a single human operator 
to minimize the potential for dangerous 
or confusing miscommunications. The 
human operator, known as the Swarm 
Commander, specifies commands using 
human-centric names for behaviors, e.g., 
“surveil building 17 with sub-swarm Alpha.” 
A designated Swarm Dispatcher node 
receives commands and transforms them 
into a series of agent-friendly subcommands, 
often by decomposing the problem into 
specific agent actions and assigning agents to 
those actions, as shown in Figure 1. In this 
example, the Swarm Dispatcher would (for 
one implementation of the survey tactic): 
calculate the set of poses necessary for 
agents to completely cover the convex hull 
of the object labeled Building 17, split those 
points evenly among the agents referred to 
as Alpha, and send each of those agents a 
set of poses to visit. The agents themselves 
are responsible for automatically choosing 
the order in which to visit the poses and for 
running the decentralized path planner used 
to deconflict airspace.

Allowing a single human to control up 
to hundreds of agents simultaneously is 

a major CCAST functional requirement, 
along with preventing the human from 
being overloaded by the sheer volume 
of information produced by agents. Our 
approach to this problem is to leverage 
a virtual reality interface (the Immersive 
Interactive Interface, or I3) that embeds 
the Swarm Commander in a 3D sandtable 
environment, where the swarm telemetry is 
rendered into virtual agent representations 
with which the Swarm Commander can 
interact using VR wand controllers (see 
Figure 3). The Commander can freely 
change perspective in the environment to 
track groups of agents as they move through 
and interact with the environment. While 
the VR interface helps avoid operator 
overload, it is also necessary to provide the 
Commander with an efficient means of 
coordinating the swarm at mission levels. 
CCAST provides command automation 
support that relieves the user from needing 
to perform tedious operations, such as 
individually selecting agents or monitoring 
battery levels. Instead, the Swarm Dispatcher 
node automatically selects agents based on 
location and capabilities, and automatically 
coordinates low battery replacements, 
including offloading tasks in progress. These 

functions allow a Commander to delegate 
common low-level tasks while focusing on 
higher-level goals like choosing buildings 
to explore or interacting with dynamic 
experiment infrastructure.

CCAST supports a priori planning via a 
special mission planning component called 
Swarm Tactic Operations Mission Planner 
(STOMP). STOMP seeks to ease the Swarm 
Commander load at mission execution time 
by providing an interface to pre-plan sets of 
commands, group them, and specify signals 
to trigger those groups of commands. A 
common mission plan element, for example, 
is a signal that triggers the simultaneous 
surveillance of many buildings at mission start. 
The Swarm Commander can send this signal 
and then be undistracted by further tasking as 
the surveillance results become available.

While many of the swarm-level design 
decisions are designed to support and interface 
with a human commander, CCAST also 
presents a swarm tactics architecture intended 
primarily for developers authoring new swarm 
behaviors. CCAST splits the swarm tactics 
architecture into three abstraction layers as a 
means of controlling complexity and enabling 
reuse, as depicted by Figure 2. At the lowest 
layer of the hierarchy are algorithms, which are 
basic agent behaviors required to function as a 
swarm element, such as processing captured 
images to look for April Tags. Primitives are 
the second layer. A primitive is a potentially 
multi-agent behavior that is still too 
rudimentary to be considered a collaborative 
swarm task. An example primitive is the 
implementation of moving to a given set of 
points in space. The highest abstraction layer 
is the swarm tactic, an explicitly collaborative 
behavior that achieves some tactical purpose 

FIGURE 1. In the CCAST network architecture, a human operator controls the 
swarm from a single command point that receives all telemetry from the agents. 
In large and complex environments, some agent telemetry may be delayed by 
seconds and other agents may be completely disconnected from the network for 
minutes at a time while moving through areas of poor coverage.

In this paper, we describe our practical 
approach to designing and implementing 
a system for enabling the organization, 
planning, and deployment of a large-scale 
heterogeneous swarm of unmanned air 
and ground robots within a common 
mission-oriented framework. Within 
that framework, we develop and integrate 
methods, common services and swarm 
tactics for exploration, evaluation and 
refinement. We have built an extensible, 
collaborative swarm ecosystem called 
Command and Control of Aggregate 
Swarm Tactics (CCAST), including 
swarm simulators of varying fidelity, with 
swarm mission code interoperable under 
simulation and real mission engagement. 
We describe how CCAST was used to plan, 
deploy, and evaluate a realistic, complex 
swarm mission in recent field experiments 
and highlight the outcome of those 
experiments. The CCAST system undergoes 
regular and repeated evaluation exercises 
to measure progress. These experiments 
are a means of evaluating the costs and 
benefits of drone swarm capabilities and 
demonstrating the effectiveness of CCAST 
methods in supporting them.

The CCAST framework is being developed 
as part of the DARPA Offensive Swarm-
Enabled Tactics (OFFSET) program, 
which envisions using swarms comprising 
upwards of 250 unmanned aircraft systems 
(UASs) and/or unmanned ground vehicles 
(UGVs) to accomplish diverse missions 
in complex urban environments [2]. Our 

FIGURE 2. The CCAST swarm tactics hierarchy: Lower layers 
represent the basic building blocks designed for reuse and 
combination into collaborative, higher-layer “tactic” behaviors.
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Individual semi-autonomous unmanned systems have already proven 
to be useful in a variety of use cases including movie production, 
agriculture, civil engineering, military operations and insurance [1]. 
Likewise, small groups of unmanned systems have shown promise, 

particularly when coordinating to achieve a common goal [3]. Less studied 
are the potential benefits of large swarms comprising hundreds of capable 
unmanned systems, likely due to the difficulties associated with creating, 
or even simulating, such a system. Swarming unmanned systems operate 
in an environment with a large number of simultaneously moving vehicles, 
with extensive coordination in real time using mobile communication 
over a rapidly shifting and dynamic environment. They are often operating 
in confined areas, moving at speeds of several meters per second, and 
combining outdoor and indoor coordination.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
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for the Swarm Commander. Tactics and 
compositions of those tactics are generally 
the only elements of the hierarchy that an 
operator directly uses to task agents. Example 
swarm tactics CCAST implements include 
building surveillance and patrols in a flock 
formation.

2) Platform-facing design
To operate safely and provide a commander 
with sufficient context to complete a mission, 
a swarm needs to perceive obstacle locations 
and major environment features. While 
single, or limited numbers of agents, are 
typically designed to operate autonomously 
and independently, our swarm platforms 
must be physically small and inexpensive to 
make large-scale operations in congested, 
dynamic environments feasible. To that 
end, we choose to rely on the effective 
combination of low cost sensors. As an 
example, all agents in the swarm run a 
decentralized path planner based on the 
RT-RRT* algorithm [14] that considers 
the reported location of all agents rather 
than attempting to detect others with an 
expensive local sensor, such as spinning lidar. 
These reported locations are only timely and 
accurate for those agents currently connected 
to the swarm network. This design choice 
results in truly swarm-oriented perception 
– disconnected platforms cannot operate 
safely in the presence of others because 
they cannot “see” them. CCAST currently 
implements a configurable behavior in this 
case, either stopping movement to minimize 
collision probability or continuing to operate 
unsafely to maximize mission completion 
probability. Each agent, at a minimum, also 
comes equipped with a low cost monocular 

camera used to read April Tags [16] in the 
environment and shares only the associated 
semantics as opposed to raw imagery.

We designed the CCAST communications 
paradigm under the assumption that 
limited network throughput and reliability 
represent key constraints for large robot 
deployments in complex environments. 
In light of these limitations, each swarm 
agent periodically shares a small telemetry 
package via the network (see Figure 1). This 
package includes the agent’s UID, position, 
heading, battery level, and current task 
– providing enough information for the 
human operator to reason about swarm state 
and for other agents to use reported position 
for path deconfliction. Telemetry messages 
are limited to only critical information to 
conserve bandwidth and are streamed via 
UDP to minimize the impact of transient 
disconnections as agents move around large 
buildings and other environment obstacles. 
Other messages that agents send as part of 
specific behaviors are disseminated using 
lightweight publish/subscribe methods that 
minimize unneeded network propagation.

CCAST swarm agents sometimes coor-
dinate implicitly and sometimes explicitly 
depending on the behavior. Implicit coordi-
nation is often the result of the centralized 
Swarm Dispatcher node creating a plan 
that is conflict-free, e.g., when splitting up 
and assigning surveillance points to a set of 
platforms monitoring an area. Explicit coor-
dination is necessary for dynamic or ongoing 
tasks where next actions are determined by 

fresh information about other swarm agents. 
CCAST also includes a custom, lightweight 
publish-subscribe framework to support the 
straightforward addition of arbitrary coor-
dination messages for specialized behaviors. 
A resilient “follow the leader” behavior is 
one example where explicit coordination is 
required. CCAST uses publish-subscribe for 
leader election and leader position updates 
on a continuous basis.

Scalable swarm operations require that 
both hardware and software solutions be 
minimal to control costs and resource 
consumption as the number of agents 
increases. We have made a number of 
tradeoffs in the CCAST design that seek to 
balance agent independence with linear, or 
ideally sub-linear, growth in the number 
of agents. Agents that do not need to 
navigate indoors and run heavy processing 
loads such as Simultaneous Localization 
and Mapping (SLAM) require nothing 
more than a Raspberry Pi 3b ($35) [19] or 
better as a co-processor running our agent 
autonomy stack and a camera such as the 
Pi Cam ($25) [20]. The major tradeoff in 
this case is the necessity of maintaining a 
live network connection for inter-agent 
path deconfliction. A platform capable of 
independent safe movement would require 
more expensive hardware, such as a 3D lidar 
and a more powerful co-processor to handle 
the incoming data in near real time.

Swarm deployments including tens to 
hundreds of flying platforms are potentially 
dangerous and cannot be rendered safe 

easily by human-directed overrides. Even 
with enough humans to manually pilot 
all platforms, no commercial platform 
uses an RC controller capable of operating 
without interference in the presence of so 
many transmitter/receiver pairs. Given the 
infeasibility of manual control, we have 
implemented a multi-layered safety protocol 
to prevent dangerous situations. The CCAST 
agent logic will reject any commands that 
would cause it to leave a pre-defined “region” 
boundary, fly below a minimum altitude, 
takeoff without passing safety checks, or 
exhaust its battery without landing at its 
original launch location. In case of a total 
CCAST software crash, we also configure 
all agent autopilot modules with slightly less 
conservative geofencing and battery failsafe 
parameters to maximize the chance of safe 
return under a variety of failure conditions.

INTEGRATED SIMULATION AND 
REAL TIME ENVIRONMENT
The cost and complexity of evaluating 
swarms necessitates the use of simulation 
for testing and evaluation, prior to live 
assessment. Simulation is critical for 
debugging, exploration, and evaluation at 
multiple levels, from swarm algorithms, 
to primitives, to tactics, to large-scale 

mission plans. While there exist high fidelity 
simulation environments designed for single 
or small numbers of agents [15, 17], there 
were no high-fidelity simulators for swarms, 
with existing solutions severely limited in 
their scalability. We developed the CCAST 
Simulator to fill this need.  

We extended AirSim, a game-based, 
open-source simulator for unmanned 
vehicles, built on top of the Unreal Engine 4 
game engine. AirSim has a state-of-the-art 
physics engine that can simulate individual 
quad-copter rotor movements, time of day 
and weather effects, and produce photo-
realistic environmental models [17]. AirSim 
was designed to provide an environment 
in which robotics systems developers can 
generate large amounts of data for training 
machine-learning algorithms involved in 
autonomous vehicle operation. The project 
focus was on single vehicle operations. 
We extended AirSim for the simulation 
of swarms (tens to hundreds) of UASs 
and UGVs, and to additional sensors and 
environmental domains, matching those we 
are testing in live field exercises. Figure 3 
depicts a screenshot of a simulation game-
level from the CCAST Simulator.

The CCAST Simulator is architected to 
integrate with autonomous vehicle flight 

control systems, including Pixhawk [23], 
using the MAVLink protocol [24]. Thus, 
the CCAST Simulator can perform either 
hardware-in-the-loop simulation or software-
in-the-loop simulation. It is also possible to 
distribute the simulation load across multiple 
hosts by executing platform logic and control 
components separately from the physics 
simulation and visualization. The human-
machine interfaces have also been abstracted 
to allow seamless transitions between 
simulation and real-world operations. 
This allows users to build expertise with 
interfaces prior to live exercises, and evaluate 
interfaces through simulation as well.

Because of the high computational 
requirements of high-fidelity simulation 
with swarms of agents, the CCAST simulator 
supports three levels of simulation fidelity: 
heavyweight, lightweight, and featherweight. 
Heavyweight simulation provides the highest 
fidelity, with software-in-the-loop autopilots 
and full per-rotor physics simulation. In 
lightweight mode, the software-in-the-loop 
autopilots and full physics simulation are 
replaced with a lightweight simulation that 
receives MAVLink commands just like 
the autopilots, but immediately performs 
those commands in an idealized way. 
Featherweight mode has the least fidelity and 

FIGURE 5. Graphs showing the time required to complete a building surveillance task (normalized by the size of the survey) vs. number of agents 
used.  (A-E) show per-building results and (F) shows the normalized aggregate. Note that building surveillance tasks are decomposed into  “survey 
points,” which specify the set of platform poses required to completely survey the set of buildings specified.

FIGURE 3. The I3 virtual reality interface presenting a 
radial context menu for building selection.

FIGURE 4. Screenshot of 200 autonomous UAS in the CCAST simulator; 
subwindows respectively show the depth map output, image 
segmentation, and EO camera output from a given platform.
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computational load, running without AirSim 
and its simulated sensor streams. To assist 
with executing high-fidelity simulation over 
large swarms, the load can be distributed 
across multiple computers, running multiple 
instances of AirSim, with simulated video 
stream generation occurring on separate 
compute resources.

Simulation has been extremely useful for:
•  Debugging, testing and evaluating 

algorithms and tactical behaviors for 
individual agents and swarms.

•  Comparing different variations of 
algorithms and tactics.

•  Assessing system performance under 
infrequent, black-swan type events.

•  Evaluating the efficiency and effectiveness 
of different mission plans.

•  Assessing mission performance using 
different configurations of agents and 
agent capabilities.

A. Use of Simulation to Advance the 
Design of Swarm Services
CCAST provides services and tactics to 
simplify swarm system mission preparation, 
deployment, and monitoring. Swarm tactics, 
which describe scalable collaborative 
behaviors of CCAST agents, often require 
configuration parameters (such as how 
many platforms to marshal for a particular 
coordinated service, or how long to loiter 
looking for something of interest) to be 
initially set at instantiation-time. These 
parameters can have a huge impact on 
the efficiency and effectiveness of the 

tactic deployment. To derive and embed 
appropriate parameters into the mission-
planning tool, we use a Monte Carlo tactic 
tuning method to modify various conditions 
and rapidly execute them in the CCAST 
Simulation Environment. 

In this section, we examine the use of the 
tactic tuning method toward automating 
parameterization of the number of agents 
to employ in mission plans containing the 
Building Surveillance Tactic, illustrating 
the synergetic use of simulation capabilities 
for designing and improving CCAST’s 
automated services.

B. Building Surveillance Example
The ideal number of agents to use in survey-
ing collections of buildings depends on 
many different attributes. To experimentally 
determine numbers of agents, we configured 
the CCAST simulator to best match the 
Camp Shelby CACTF environment, shown 
in Figure 6.

The Tactic Tuning Method automatically 
executed 912 simulations with various 
parameterizations allowing each to run to 
mission completion. The runs measured the 
time to complete each mission while varying 
the number of agents to deploy (from 1-22) 
and the number of buildings to survey 
(1, 2, 3, 5, and 10), while keeping all other 
variables constant.

The building surveillance tactic works by 
decomposing 3D building polygons from 
the model into numerous survey points (i.e., 
geospatial poses). By loitering at this set 

of survey points, platforms can effectively 
surveil the entirety of building convex hulls. 
The more and the larger the buildings, the 
more total survey points required to achieve 
complete coverage.

Figure 5 shows results from a Tactic 
Tuning Service experiment visualized 
as the mean time to complete surveys 
versus the number of agents used. Panels 
A thru E show results for each of 1, 2, 
3, 5 and 10 buildings surveyed together. 
The Y-axis is normalized by the number 
of survey points in order to visually 
emphasize natural groupings based on the 
number of buildings. Figure 5F shows the 
composite view of all the runs together, 
again normalized by the number of survey 
points. Each color represents the runs for a 
particular building configuration: red for  
1 building, yellow for 2 buildings, green for 
3 buildings, and purple for 5 buildings. The 
runs with 10 buildings were dropped from 
this figure because the low mission success 
rate did not provide enough data.

These charts show two important 
results. First, the number of buildings in 
a surveillance run impacts the time to 
complete the tactic independent of the total 
number of points, as shown in Figure 5F. 
This is due to the grouping of points in 
space – those around the same building 
are generally closer together than those 
around distinct buildings, which minimizes 
transit time among them. Second, these 
graphs show that the mean time to visit 
each survey point tended to decrease with 

increasing numbers of agents, up to an 
inflection point. Assigning more platforms 
to the building surveillance meant the total 
number of survey points needed to be covered 
for a given configuration of buildings were 
completed in less elapsed time, until such time 
as there were “too many” in a confined space. 
At that point, collision avoidance maneuvers 
cost more time than the increased parallelism 
gained. Therefore, there exists an upper 
bound for a range of potential platforms to 
use, beyond which we generally take longer. 
Further, the range is expected to be a function 
of the number of survey points, which can 
be estimated beforehand. Figure 7 illustrates 
the detrimental effects of exceeding the upper 
bound by showing the percentage of successful 
missions as the number of agents used 
increases. Increased contention for airspace 
quickly leads to skipped survey points because 

agents cannot find safe paths to reach them.
We used these results to derive appropri-

ate parameters to embed into automated 
range selection for the surveillance tactic.

EXERCISE DESCRIPTION  
AND EVALUATION
Regularly testing swarm systems in the field 
is crucial for meaningful evaluation. Mobility 
in a complex environment inevitably 
produces effects that are notoriously difficult 
to simulate at scale, especially with respect 
to radio propagation for localization and 
communication. These effects in turn are 
likely to expose new or different failure 
cases in the layers that build atop these 
fundamental building blocks.

To ensure that our development efforts 
remain realistic and measure progress, the 
OFFSET program conducts field exercises 

approximately every six months. These 
exercises are of increasing scope and 
complexity, including growth in swarm size 
(50 to 250 vehicles), area of operations (two 
city blocks to eight city blocks square), and 
mission duration (15 minutes to 4-6 hours). 

For two weeks in December 2019, our 
CCAST team worked with a government 
evaluation team and five teams of technology 
developers at the Camp Shelby Combined 
Arms Collective Training Facility (CACTF) 
near Hattiesburg, MS. This was the third 
scheduled field exercise (FX-3) for the 
OFFSET program.

The Camp Shelby CACTF (Figure 8) is 
a 2.25 km2 realistic urban warfare training 
facility consisting of 26 buildings of various 
heights and dimensions, paved and unpaved 
roads, alleys, fields, and foliage.

The goals of FX-3 were to deploy and 
test CCAST swarm command and control 
systems within a government-team-developed 
scenario targeted at rewarding large scale 
coordination in a realistic urban environment. 
The overall goal of the scenario was to safely 
find all of the “high value” objectives within 
the area of interest.

Some scenario elements were virtualized 
to expedite experiments and improve 
evaluation. For instance, scenario information 
was scattered around the CACTF with April 
Tags (9) to focus our agents’ information 
discovery.  Similarly, our agents interacted 
with Bluetooth Low Energy (BLE) beacons 
in the environment to simulate platform 
loss and information discovery (e.g., agents 
finding high value pieces of information). 
Heterogeneous agent collaboration was 
encouraged through a number of scenario 
intricacies.

FIGURE 8. Camp Shelby Experimental Range. FIGURE 9. Example of April Tag positionings at FX-3.

FIGURE 10. The I3 virtual reality interface uses the georectified 3D model of the area of interest, 
enabling the Swarm Commander’s increased situation awareness while controlling the swarm.

FIGURE 7. The percentage of missions successfully tasking platforms 
to each survey point vs. the number of platforms deployed. 

FIGURE 6. Map of the Camp Shelby CACTF annotated with 
deployment locations and buildings chosen for surveillance. 
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A. Operational Phases
To illustrate how CCAST services are used 
to organize, compose and execute complex 
swarm missions, we will consider ordered 
phases of operation:

1) Initial Survey of the Area of Operations
CCAST first surveys the mission area with 
high-resolution, high-accuracy mapping 
platforms. The output of this stage is a geo-
rectified 3D model from which we derive:
•  A high-resolution georectified ortho- 

mosaic for 2D situation awareness 
displays.

•  Digital terrain and surface models.
•  A categorized point cloud providing 

high-level navigation guidance to  
plot near-optimal courses avoiding 
buildings, cliffs, etc., while preferring 
advantageous terrain.
The 3D model also provides realistic 

scenes for our simulator and background for 
the virtual reality swarm control interface, 
I3 (10).

2) Mission Planning
CCAST provides the interactive Swarm 
Tactics and Operations Mission Planner 
(STOMP) tool for building mission plans 
(see Figure 11). STOMP integrates with 
the multi-resolution Swarm Simulation 
environment to rapidly test, evaluate, and 
refine those plans, providing near-real-time 
insights to the mission developer through 
STOMP. Mission plans can be persisted 
and shared between instances of STOMP, 
enabling plans to be created long before 
mission start, but modified right until they 
are instantiated and launched.

3) Instantiating the Mission Plan
Once platforms have been staged for launch 
and powered on, the operator loads the 
pre-configured mission plan. The plan is 
instantiated using a constraint optimization 
approach by binding available platforms 
on the network to roles or groups in the 
plan. Once fully instantiated, the Swarm 
Commander enters the virtual reality I3 
interface.

4) Controlling the Swarm  
During Operation
Even the largest CCAST swarms are 
intended to be overseen by a single Swarm 
Commander. I3 allows commanders to 

visualize and control execution of mission 
plans. The Swarm Commander monitors 
progress from within I3 and triggers 
additional actions responding to unfolding 
scenario information.  

5) Automatic Mission Execution 
Monitoring
During the entire mission, the CCAST 
framework automatically monitors each 
platform and overall progress against 
the plan. Each platform’s autonomous 
agent logic constantly monitors platform 
health and the status of other nearby 
agents along with their progress towards 
shared goals. Agents can also dynamically 
request help from other platforms. For 
instance, a platform sensing low battery 
will automatically request a replacement to 
pick-up where it left-off; or a platform that 
encounters a condition or threat will request 
backup from a better positioned agent to 
manage the detected threat.

6) Safety and Remote Monitoring
The positions and status of CCAST platforms 
can be monitored both on-site (e.g., by safety 
spotters) and remotely in near-real-time, 
using a variety of displays, ranging from 
heads-up augmented reality interfaces, to 
a common Android phone running the 
Android Team Awareness Kit (ATAK) for 
situation awareness [22].

B. Exercise Observations
Agents autonomously respond to environ- 
mental stimuli, real (e.g., encountering 
an unexpected obstacle) and simulated, 
and report these events back to the swarm 
dispatcher which aggregates, logs, and 
forwards portions to an exercise evaluator’s 
framework. Given many simultaneous 
streams of agent telemetry, and the lack of 
definitive context for many common events 
(e.g., why an agent followed a given path 
plan), thorough quantitative assessments 
for swarm exercises are still works in 
progress. At current maturity, we instead 
rely on a combination of readily understood 
aggregate metrics, such as swarm scale,  
and empirical observations of high-level  
behaviors. Defining and accurately capturing  
new swarm metrics is ongoing research 
to enable baselines as future points of 
comparison.

1) Coordination
CCAST implements primitives and algorithms 
for various forms of multi-agent coordination 
including consensus and deconfliction. 
The coordination algorithms are of two 
approaches: 1) centralized coordination where 
an explicit pre-agreed-upon agent makes a 
decision for the group, or 2) decentralized 
coordination where a dynamically elected 
leader makes those decisions. Decentralized 
coordination offers various election strategies 

and re-election criteria. Decentralization has 
higher computational and communication 
overhead, but effectively eliminates single 
points of failure. For the FX-3 evaluation 
exercise, most CCAST tactics used a 
centralized coordination model because the 
underlying network (LTE) was centralized.  
In that configuration, distributed coordination 
offered little advantage because loss of a 
backhaul link stopped all communications. 
During the experiment, there were no aerial 
platform-on-platform collisions. Throughout 
the exercises, whenever a platform issued an 
automated call for support or replacement 
(e.g., when low battery prevented completing 
an assigned task), it was answered with an 
additional or replacement platform until we 
had exhausted all platforms held in reserve.

2) Navigation
Environmental obstacle avoidance worked 
well throughout the exercise, with some 
exceptions.  Most environmental collisions 
occurred with powerlines and road signs – 
i.e., small items that were not captured well 
in 3D models and needed manual addition 
as obstacles. Dynamic obstacle avoidance 
functioned fairly well, and was likely overly 
conservative, as we experienced no collisions, 
but did experience deadlock conditions 
where platforms could not find safe paths 
around other platforms, requiring manual 
intervention.

Ground rovers have more constraints on 
their motion, so safe path planning is more 
complex.  Our rovers struggled to navigate 
over some terrain – particularly muddy areas, 
necessitating preference for paved roads in 
path planning.  Since our navigation pipeline 
offers characterization of point clouds, it was 
straightforward to add this preference.

CCAST’s GPS-denied SLAM stack 
enabled rover exploration of indoor spaces. 

On several occasions, rovers successfully 
entered buildings and explored portions 
of the floorplan. However, we often lost 
network connectivity when entering 
the concrete buildings. In consequence, 
determining how well the rovers functioned 
indoors was severely hampered. In the few 
cases where a rover made it back outside 
after exploring a building, our disruption-
tolerant networking successfully queued 
and sent information collected during their 
disconnected interior exploration.

3) Scale
As the on-site exercise period progressed, 
we were able to deploy larger-sized swarms, 
cover more area, and penetrate more 
complex environments (e.g., exploring 
GPS-denied areas). Figure 11 shows maps 
of the area of interest where each panel 
represents a different experimental run with 
platform location reports (represented by 
blue dots connected by red lines). With each 
new experimental run, panels A through F 
show a general increase in area covered and 
larger numbers of platforms deployed. In our 
largest run, the CCAST team deployed more 
than 60 platforms in the swarm and found 
more than 180 unique April Tags.

LESSONS LEARNED  
AND NEXT STEPS
The CCAST team has learned many lessons 
in the course of development and also 
identified a number of open questions. One 
lesson learned is that there is a minimum set 
of capabilities necessary for swarm agents to 
interoperate safely, which includes detection of 
other agents with a sufficient time horizon to 
plan and execute safe trajectories in response. 
This capability can be satisfied by information 
exchange (as in CCAST), direct detection, or 
centralized control, with tradeoffs among cost, 

FIGURE 12. Increasing scale of vehicles deployed and area covered.
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size, and network requirements associated 
with each approach. Another key lesson 
is that operator overload must be addressed 
as a first order concern in swarm systems, 
before optimizing for operational efficiency. 
Platforms affordable enough to scale to large 
swarms do not have the bulky, high-fidelity 
sensors or power-hungry computational 
resources necessary for long-term unsuper- 
vised autonomy, and thus require the human 
commander to have persistent and reliable 
situation awareness at a glance. Key open 
questions remain about how to design and 
build swarm systems suitable for a range 
of possible operating environments. Large 
open spaces where agents can operate at 
high speeds and maintain conservative 
safety distances call for very different design 
choices than the congested pseudo-urban 
environments in which we have tested 
CCAST. The operator’s environment is also 
a key parameter for system design. CCAST’s 
VR interface is optimized for immersion 
and multi-modal inputs, but other contexts 
require a “heads up” display or for the 
operator to have free hands. The choices 
made for CCAST’s I3 component cannot 
simply be ported to fundamentally different 
form factors, and adapting to other constraint 
sets will require further work on identifying 
the set of generalizable requirements for 
such a user interface.

CCAST is currently under active 
development, with ongoing goals of 
increasing scale to 250+ simultaneously 
deployed platforms, continuing to simplify 
and refine integration points, and increasing 
the level of closed-loop autonomy – for both 
individual agents and the swarm as a whole. 
As these three technical thrusts co-evolve, 
we expect to gain further insights into the 
management of cooperative, heterogeneous 
semi-autonomous systems at previously 
untested scales.

CONCLUSION
We have introduced and described at a high 
level the elements of the CCAST drone 
swarm framework for organizing large 
collections of autonomous platforms into 
a cohesive mission-focused capability. It is 
a comprehensive set of methods, services, 
capabilities and means for evolution and 
extension, going from organizing, testing 
and executing drone swarm tactics to 
complete missions cooperatively executed 

FIGURE 11. The Swarm Tactics Operations and Mission Planning (STOMP) tool.
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by large collections of aerial and ground 
platforms. To our knowledge, it is the most 
comprehensive framework available to 
explore the benefits and costs of automated 
and semi-automated large-scale drone 
technology. Live field experiments have 
shown the viability of the CCAST approach 
toward organizing and supporting drone 
swarm activity, and demonstrated upward 
of 60 independent platforms operating 
together under the control of a single 
mission commander.

Experimentation included integration 
with five external collaborators, demonstra- 
ting the utility of the CCAST architecture. 
We have taken a number of steps to ensure 
that externally developed capabilities can 
interoperate and integrate effectively into 
our swarm ecosystem. 1) We have developed 
an architecture that is open and extensible, 
including interfaces with commonly used 
standardized tools (e.g., Robot Operating 
System (ROS), PX4, ArduPilot). 2) We 
have designed simulation and hardware 
interfaces to maximize transparent code reuse 
between the two. 3) We have developed 
CCAST training materials to assist with 

development and interoperability issues. We 
encourage outside organizations to consider 
integration and evaluation experiments with 
CCAST in the future.

A video summarizing the FX3 CCAST 
drone swarm exercise is available online at 
https://youtu.be/00jUHD3LBsQ n
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