
GetMobile December 2020 | Volume 24, Issue 416 17December 2020 | Volume 24, Issue 4 GetMobile

[MOBILE PLATFORMS]

Ph
ot

o,
 is

to
ck

ph
ot

o.
co

m

Shane Clark, Kyle Usbeck*, David Diller and
Richard E. Schantz Raytheon BBN Technologies, Cambridge, Massachusetts
* Participated in this research while employed at Raytheon BBN Technologies

Editor: Shadi Noghabi

A Framework and Practical
Deployment of Heterogeneous
Unmanned System Swarms

CCAST:

GetMobile December 2020 | Volume 24, Issue 418 19December 2020 | Volume 24, Issue 4 GetMobile

[MOBILE PLATFORMS] [MOBILE PLATFORMS]

recent exercise successfully engaged up to
60 heterogeneous, air and ground platforms
in mission execution.

By leveraging and combining emerging
technologies in swarm autonomy and
human-swarm teaming, the program and
project seek to enable rapid development,
evaluation, and deployment of leap-ahead
capabilities.

RELATED WORK
Drone swarms are a topic of much current
research and experimentation, but it is a
relatively new area and lacks consensus
around established technology or best
practices. There are many dimensions of
related work encompassing CCAST. We
briefly summarize a few prominent ones
for perspective on our current platform,
capabilities, and experimental results.

At the platform level, we are creating
a distributed system for organizing and
controlling a large scale, coordinated
collection of heterogeneous drones,
including air and ground platforms intended
to accomplish complex, multi-dimensional
and multi-phase missions. Aspirations
for large scale are multiple hundreds, in
deliberate incremental steps (recently about
75 coordinated vehicles). That degree of
scale by itself presents numerous choices
and challenges and mandates new solutions
over single drone capabilities in areas such
as plan decomposition, coordination and
communication in close and sparse mobile
operations, launch and flight logistics, and

dynamic failure management. Deconfliction,
coordination and dynamic failure
management over fast moving independent
platforms obsoletes the solutions offered
for single and small drone configurations.
Prior related work had fewer platforms [4],
a single coordinated, non-reactive objective
[6], or staged laboratory experiments with
less capable platforms [8]. Beyond the scale
and scope of the end mission, our integration
and coordination software represents
a distributed middleware dynamically
incorporating a multitude of services for
organizing, selecting, communicating,
monitoring, and coordinating individual
platforms into a cohesive whole. We share
similar objectives to other emerging swarm
software frameworks, for example [9]
and [10]. These platforms use different
approaches to establish a common, reusable
middleware framework, focused on different
visions for applications and uses. However,
ours is the first to specifically focus on
contributions to harnessing the power of
very large-scale swarms.

At higher levels, our platform
incorporates functions and services enabling
complex, large scale, coordinated missions,
including planning, group communication,
obstacle avoidance, and contingency
handling. There is much ongoing work in
these subareas complementary to services
in our platform, for example [11]. Much
of this work is theoretical and focused on
near-optimal outcomes under selected
constraints. Our services work is focused on
demonstrating the utility of simple forms
that are operationally capable of supporting
our large-scale experimentation. It includes
companion work on interfaces allowing
a single mission commander to provide
oversight of a semi-autonomous mission at
very high levels of abstraction [18].

CCAST INTEGRATED
CONCEPT AND DESIGN
System Design
Designing a control framework to manage a
large number of autonomous, mobile agents
in complex urban environments requires
careful consideration and balancing of the
human, computational, and networking
constraints inherent in live hardware testing.

1) Human-facing design
All swarm tasking in CCAST currently
originates from a single human operator
to minimize the potential for dangerous
or confusing miscommunications. The
human operator, known as the Swarm
Commander, specifies commands using
human-centric names for behaviors, e.g.,
“surveil building 17 with sub-swarm Alpha.”
A designated Swarm Dispatcher node
receives commands and transforms them
into a series of agent-friendly subcommands,
often by decomposing the problem into
specific agent actions and assigning agents to
those actions, as shown in Figure 1. In this
example, the Swarm Dispatcher would (for
one implementation of the survey tactic):
calculate the set of poses necessary for
agents to completely cover the convex hull
of the object labeled Building 17, split those
points evenly among the agents referred to
as Alpha, and send each of those agents a
set of poses to visit. The agents themselves
are responsible for automatically choosing
the order in which to visit the poses and for
running the decentralized path planner used
to deconflict airspace.

Allowing a single human to control up
to hundreds of agents simultaneously is

a major CCAST functional requirement,
along with preventing the human from
being overloaded by the sheer volume
of information produced by agents. Our
approach to this problem is to leverage
a virtual reality interface (the Immersive
Interactive Interface, or I3) that embeds
the Swarm Commander in a 3D sandtable
environment, where the swarm telemetry is
rendered into virtual agent representations
with which the Swarm Commander can
interact using VR wand controllers (see
Figure 3). The Commander can freely
change perspective in the environment to
track groups of agents as they move through
and interact with the environment. While
the VR interface helps avoid operator
overload, it is also necessary to provide the
Commander with an efficient means of
coordinating the swarm at mission levels.
CCAST provides command automation
support that relieves the user from needing
to perform tedious operations, such as
individually selecting agents or monitoring
battery levels. Instead, the Swarm Dispatcher
node automatically selects agents based on
location and capabilities, and automatically
coordinates low battery replacements,
including offloading tasks in progress. These

functions allow a Commander to delegate
common low-level tasks while focusing on
higher-level goals like choosing buildings
to explore or interacting with dynamic
experiment infrastructure.

CCAST supports a priori planning via a
special mission planning component called
Swarm Tactic Operations Mission Planner
(STOMP). STOMP seeks to ease the Swarm
Commander load at mission execution time
by providing an interface to pre-plan sets of
commands, group them, and specify signals
to trigger those groups of commands. A
common mission plan element, for example,
is a signal that triggers the simultaneous
surveillance of many buildings at mission start.
The Swarm Commander can send this signal
and then be undistracted by further tasking as
the surveillance results become available.

While many of the swarm-level design
decisions are designed to support and interface
with a human commander, CCAST also
presents a swarm tactics architecture intended
primarily for developers authoring new swarm
behaviors. CCAST splits the swarm tactics
architecture into three abstraction layers as a
means of controlling complexity and enabling
reuse, as depicted by Figure 2. At the lowest
layer of the hierarchy are algorithms, which are
basic agent behaviors required to function as a
swarm element, such as processing captured
images to look for April Tags. Primitives are
the second layer. A primitive is a potentially
multi-agent behavior that is still too
rudimentary to be considered a collaborative
swarm task. An example primitive is the
implementation of moving to a given set of
points in space. The highest abstraction layer
is the swarm tactic, an explicitly collaborative
behavior that achieves some tactical purpose

FIGURE 1. In the CCAST network architecture, a human operator controls the
swarm from a single command point that receives all telemetry from the agents.
In large and complex environments, some agent telemetry may be delayed by
seconds and other agents may be completely disconnected from the network for
minutes at a time while moving through areas of poor coverage.

In this paper, we describe our practical
approach to designing and implementing
a system for enabling the organization,
planning, and deployment of a large-scale
heterogeneous swarm of unmanned air
and ground robots within a common
mission-oriented framework. Within
that framework, we develop and integrate
methods, common services and swarm
tactics for exploration, evaluation and
refinement. We have built an extensible,
collaborative swarm ecosystem called
Command and Control of Aggregate
Swarm Tactics (CCAST), including
swarm simulators of varying fidelity, with
swarm mission code interoperable under
simulation and real mission engagement.
We describe how CCAST was used to plan,
deploy, and evaluate a realistic, complex
swarm mission in recent field experiments
and highlight the outcome of those
experiments. The CCAST system undergoes
regular and repeated evaluation exercises
to measure progress. These experiments
are a means of evaluating the costs and
benefits of drone swarm capabilities and
demonstrating the effectiveness of CCAST
methods in supporting them.

The CCAST framework is being developed
as part of the DARPA Offensive Swarm-
Enabled Tactics (OFFSET) program,
which envisions using swarms comprising
upwards of 250 unmanned aircraft systems
(UASs) and/or unmanned ground vehicles
(UGVs) to accomplish diverse missions
in complex urban environments [2]. Our

FIGURE 2. The CCAST swarm tactics hierarchy: Lower layers
represent the basic building blocks designed for reuse and
combination into collaborative, higher-layer “tactic” behaviors.

Swarm
Dispatcher

Swarm
Commander

Swarm Commands

Swarm Telemetry

Agent Telemetry
Swarm Commands

Swarm Tactic
Surveille building

exterior as
swarm

Navigate route
while reporting

April Tags
Primitive

Algorithms Navigate to point Report April Tags
observed

Individual semi-autonomous unmanned systems have already proven
to be useful in a variety of use cases including movie production,
agriculture, civil engineering, military operations and insurance [1].
Likewise, small groups of unmanned systems have shown promise,

particularly when coordinating to achieve a common goal [3]. Less studied
are the potential benefits of large swarms comprising hundreds of capable
unmanned systems, likely due to the difficulties associated with creating,
or even simulating, such a system. Swarming unmanned systems operate
in an environment with a large number of simultaneously moving vehicles,
with extensive coordination in real time using mobile communication
over a rapidly shifting and dynamic environment. They are often operating
in confined areas, moving at speeds of several meters per second, and
combining outdoor and indoor coordination.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

21December 2020 | Volume 24, Issue 4 GetMobileGetMobile September 2020 | Volume 24, Issue 320

[MOBILE PLATFORMS] [MOBILE PLATFORMS]

for the Swarm Commander. Tactics and
compositions of those tactics are generally
the only elements of the hierarchy that an
operator directly uses to task agents. Example
swarm tactics CCAST implements include
building surveillance and patrols in a flock
formation.

2) Platform-facing design
To operate safely and provide a commander
with sufficient context to complete a mission,
a swarm needs to perceive obstacle locations
and major environment features. While
single, or limited numbers of agents, are
typically designed to operate autonomously
and independently, our swarm platforms
must be physically small and inexpensive to
make large-scale operations in congested,
dynamic environments feasible. To that
end, we choose to rely on the effective
combination of low cost sensors. As an
example, all agents in the swarm run a
decentralized path planner based on the
RT-RRT* algorithm [14] that considers
the reported location of all agents rather
than attempting to detect others with an
expensive local sensor, such as spinning lidar.
These reported locations are only timely and
accurate for those agents currently connected
to the swarm network. This design choice
results in truly swarm-oriented perception
– disconnected platforms cannot operate
safely in the presence of others because
they cannot “see” them. CCAST currently
implements a configurable behavior in this
case, either stopping movement to minimize
collision probability or continuing to operate
unsafely to maximize mission completion
probability. Each agent, at a minimum, also
comes equipped with a low cost monocular

camera used to read April Tags [16] in the
environment and shares only the associated
semantics as opposed to raw imagery.

We designed the CCAST communications
paradigm under the assumption that
limited network throughput and reliability
represent key constraints for large robot
deployments in complex environments.
In light of these limitations, each swarm
agent periodically shares a small telemetry
package via the network (see Figure 1). This
package includes the agent’s UID, position,
heading, battery level, and current task
– providing enough information for the
human operator to reason about swarm state
and for other agents to use reported position
for path deconfliction. Telemetry messages
are limited to only critical information to
conserve bandwidth and are streamed via
UDP to minimize the impact of transient
disconnections as agents move around large
buildings and other environment obstacles.
Other messages that agents send as part of
specific behaviors are disseminated using
lightweight publish/subscribe methods that
minimize unneeded network propagation.

CCAST swarm agents sometimes coor-
dinate implicitly and sometimes explicitly
depending on the behavior. Implicit coordi-
nation is often the result of the centralized
Swarm Dispatcher node creating a plan
that is conflict-free, e.g., when splitting up
and assigning surveillance points to a set of
platforms monitoring an area. Explicit coor-
dination is necessary for dynamic or ongoing
tasks where next actions are determined by

fresh information about other swarm agents.
CCAST also includes a custom, lightweight
publish-subscribe framework to support the
straightforward addition of arbitrary coor-
dination messages for specialized behaviors.
A resilient “follow the leader” behavior is
one example where explicit coordination is
required. CCAST uses publish-subscribe for
leader election and leader position updates
on a continuous basis.

Scalable swarm operations require that
both hardware and software solutions be
minimal to control costs and resource
consumption as the number of agents
increases. We have made a number of
tradeoffs in the CCAST design that seek to
balance agent independence with linear, or
ideally sub-linear, growth in the number
of agents. Agents that do not need to
navigate indoors and run heavy processing
loads such as Simultaneous Localization
and Mapping (SLAM) require nothing
more than a Raspberry Pi 3b ($35) [19] or
better as a co-processor running our agent
autonomy stack and a camera such as the
Pi Cam ($25) [20]. The major tradeoff in
this case is the necessity of maintaining a
live network connection for inter-agent
path deconfliction. A platform capable of
independent safe movement would require
more expensive hardware, such as a 3D lidar
and a more powerful co-processor to handle
the incoming data in near real time.

Swarm deployments including tens to
hundreds of flying platforms are potentially
dangerous and cannot be rendered safe

easily by human-directed overrides. Even
with enough humans to manually pilot
all platforms, no commercial platform
uses an RC controller capable of operating
without interference in the presence of so
many transmitter/receiver pairs. Given the
infeasibility of manual control, we have
implemented a multi-layered safety protocol
to prevent dangerous situations. The CCAST
agent logic will reject any commands that
would cause it to leave a pre-defined “region”
boundary, fly below a minimum altitude,
takeoff without passing safety checks, or
exhaust its battery without landing at its
original launch location. In case of a total
CCAST software crash, we also configure
all agent autopilot modules with slightly less
conservative geofencing and battery failsafe
parameters to maximize the chance of safe
return under a variety of failure conditions.

INTEGRATED SIMULATION AND
REAL TIME ENVIRONMENT
The cost and complexity of evaluating
swarms necessitates the use of simulation
for testing and evaluation, prior to live
assessment. Simulation is critical for
debugging, exploration, and evaluation at
multiple levels, from swarm algorithms,
to primitives, to tactics, to large-scale

mission plans. While there exist high fidelity
simulation environments designed for single
or small numbers of agents [15, 17], there
were no high-fidelity simulators for swarms,
with existing solutions severely limited in
their scalability. We developed the CCAST
Simulator to fill this need.

We extended AirSim, a game-based,
open-source simulator for unmanned
vehicles, built on top of the Unreal Engine 4
game engine. AirSim has a state-of-the-art
physics engine that can simulate individual
quad-copter rotor movements, time of day
and weather effects, and produce photo-
realistic environmental models [17]. AirSim
was designed to provide an environment
in which robotics systems developers can
generate large amounts of data for training
machine-learning algorithms involved in
autonomous vehicle operation. The project
focus was on single vehicle operations.
We extended AirSim for the simulation
of swarms (tens to hundreds) of UASs
and UGVs, and to additional sensors and
environmental domains, matching those we
are testing in live field exercises. Figure 3
depicts a screenshot of a simulation game-
level from the CCAST Simulator.

The CCAST Simulator is architected to
integrate with autonomous vehicle flight

control systems, including Pixhawk [23],
using the MAVLink protocol [24]. Thus,
the CCAST Simulator can perform either
hardware-in-the-loop simulation or software-
in-the-loop simulation. It is also possible to
distribute the simulation load across multiple
hosts by executing platform logic and control
components separately from the physics
simulation and visualization. The human-
machine interfaces have also been abstracted
to allow seamless transitions between
simulation and real-world operations.
This allows users to build expertise with
interfaces prior to live exercises, and evaluate
interfaces through simulation as well.

Because of the high computational
requirements of high-fidelity simulation
with swarms of agents, the CCAST simulator
supports three levels of simulation fidelity:
heavyweight, lightweight, and featherweight.
Heavyweight simulation provides the highest
fidelity, with software-in-the-loop autopilots
and full per-rotor physics simulation. In
lightweight mode, the software-in-the-loop
autopilots and full physics simulation are
replaced with a lightweight simulation that
receives MAVLink commands just like
the autopilots, but immediately performs
those commands in an idealized way.
Featherweight mode has the least fidelity and

FIGURE 5. Graphs showing the time required to complete a building surveillance task (normalized by the size of the survey) vs. number of agents
used. (A-E) show per-building results and (F) shows the normalized aggregate. Note that building surveillance tasks are decomposed into “survey
points,” which specify the set of platform poses required to completely survey the set of buildings specified.

FIGURE 3. The I3 virtual reality interface presenting a
radial context menu for building selection.

FIGURE 4. Screenshot of 200 autonomous UAS in the CCAST simulator;
subwindows respectively show the depth map output, image
segmentation, and EO camera output from a given platform.

5

10

15

20

1 10 100
Survey Points per Agent (log scale)

Ti
m

e
to

 C
om

pl
et

e
Su

rv
ey

 p
er

 S
ur

ve
y

Po
in

t (
s)

50

100

150

200

surveypoints
Number of

Survey
Points

22
54

63

212

C

F

A

D

B

E

GetMobile December 2020 | Volume 24, Issue 422 23December 2020 | Volume 24, Issue 4 GetMobile

computational load, running without AirSim
and its simulated sensor streams. To assist
with executing high-fidelity simulation over
large swarms, the load can be distributed
across multiple computers, running multiple
instances of AirSim, with simulated video
stream generation occurring on separate
compute resources.

Simulation has been extremely useful for:
• Debugging, testing and evaluating

algorithms and tactical behaviors for
individual agents and swarms.

• Comparing different variations of
algorithms and tactics.

• Assessing system performance under
infrequent, black-swan type events.

• Evaluating the efficiency and effectiveness
of different mission plans.

• Assessing mission performance using
different configurations of agents and
agent capabilities.

A. Use of Simulation to Advance the
Design of Swarm Services
CCAST provides services and tactics to
simplify swarm system mission preparation,
deployment, and monitoring. Swarm tactics,
which describe scalable collaborative
behaviors of CCAST agents, often require
configuration parameters (such as how
many platforms to marshal for a particular
coordinated service, or how long to loiter
looking for something of interest) to be
initially set at instantiation-time. These
parameters can have a huge impact on
the efficiency and effectiveness of the

tactic deployment. To derive and embed
appropriate parameters into the mission-
planning tool, we use a Monte Carlo tactic
tuning method to modify various conditions
and rapidly execute them in the CCAST
Simulation Environment.

In this section, we examine the use of the
tactic tuning method toward automating
parameterization of the number of agents
to employ in mission plans containing the
Building Surveillance Tactic, illustrating
the synergetic use of simulation capabilities
for designing and improving CCAST’s
automated services.

B. Building Surveillance Example
The ideal number of agents to use in survey-
ing collections of buildings depends on
many different attributes. To experimentally
determine numbers of agents, we configured
the CCAST simulator to best match the
Camp Shelby CACTF environment, shown
in Figure 6.

The Tactic Tuning Method automatically
executed 912 simulations with various
parameterizations allowing each to run to
mission completion. The runs measured the
time to complete each mission while varying
the number of agents to deploy (from 1-22)
and the number of buildings to survey
(1, 2, 3, 5, and 10), while keeping all other
variables constant.

The building surveillance tactic works by
decomposing 3D building polygons from
the model into numerous survey points (i.e.,
geospatial poses). By loitering at this set

of survey points, platforms can effectively
surveil the entirety of building convex hulls.
The more and the larger the buildings, the
more total survey points required to achieve
complete coverage.

Figure 5 shows results from a Tactic
Tuning Service experiment visualized
as the mean time to complete surveys
versus the number of agents used. Panels
A thru E show results for each of 1, 2,
3, 5 and 10 buildings surveyed together.
The Y-axis is normalized by the number
of survey points in order to visually
emphasize natural groupings based on the
number of buildings. Figure 5F shows the
composite view of all the runs together,
again normalized by the number of survey
points. Each color represents the runs for a
particular building configuration: red for
1 building, yellow for 2 buildings, green for
3 buildings, and purple for 5 buildings. The
runs with 10 buildings were dropped from
this figure because the low mission success
rate did not provide enough data.

These charts show two important
results. First, the number of buildings in
a surveillance run impacts the time to
complete the tactic independent of the total
number of points, as shown in Figure 5F.
This is due to the grouping of points in
space – those around the same building
are generally closer together than those
around distinct buildings, which minimizes
transit time among them. Second, these
graphs show that the mean time to visit
each survey point tended to decrease with

increasing numbers of agents, up to an
inflection point. Assigning more platforms
to the building surveillance meant the total
number of survey points needed to be covered
for a given configuration of buildings were
completed in less elapsed time, until such time
as there were “too many” in a confined space.
At that point, collision avoidance maneuvers
cost more time than the increased parallelism
gained. Therefore, there exists an upper
bound for a range of potential platforms to
use, beyond which we generally take longer.
Further, the range is expected to be a function
of the number of survey points, which can
be estimated beforehand. Figure 7 illustrates
the detrimental effects of exceeding the upper
bound by showing the percentage of successful
missions as the number of agents used
increases. Increased contention for airspace
quickly leads to skipped survey points because

agents cannot find safe paths to reach them.
We used these results to derive appropri-

ate parameters to embed into automated
range selection for the surveillance tactic.

EXERCISE DESCRIPTION
AND EVALUATION
Regularly testing swarm systems in the field
is crucial for meaningful evaluation. Mobility
in a complex environment inevitably
produces effects that are notoriously difficult
to simulate at scale, especially with respect
to radio propagation for localization and
communication. These effects in turn are
likely to expose new or different failure
cases in the layers that build atop these
fundamental building blocks.

To ensure that our development efforts
remain realistic and measure progress, the
OFFSET program conducts field exercises

approximately every six months. These
exercises are of increasing scope and
complexity, including growth in swarm size
(50 to 250 vehicles), area of operations (two
city blocks to eight city blocks square), and
mission duration (15 minutes to 4-6 hours).

For two weeks in December 2019, our
CCAST team worked with a government
evaluation team and five teams of technology
developers at the Camp Shelby Combined
Arms Collective Training Facility (CACTF)
near Hattiesburg, MS. This was the third
scheduled field exercise (FX-3) for the
OFFSET program.

The Camp Shelby CACTF (Figure 8) is
a 2.25 km2 realistic urban warfare training
facility consisting of 26 buildings of various
heights and dimensions, paved and unpaved
roads, alleys, fields, and foliage.

The goals of FX-3 were to deploy and
test CCAST swarm command and control
systems within a government-team-developed
scenario targeted at rewarding large scale
coordination in a realistic urban environment.
The overall goal of the scenario was to safely
find all of the “high value” objectives within
the area of interest.

Some scenario elements were virtualized
to expedite experiments and improve
evaluation. For instance, scenario information
was scattered around the CACTF with April
Tags (9) to focus our agents’ information
discovery. Similarly, our agents interacted
with Bluetooth Low Energy (BLE) beacons
in the environment to simulate platform
loss and information discovery (e.g., agents
finding high value pieces of information).
Heterogeneous agent collaboration was
encouraged through a number of scenario
intricacies.

FIGURE 8. Camp Shelby Experimental Range. FIGURE 9. Example of April Tag positionings at FX-3.

FIGURE 10. The I3 virtual reality interface uses the georectified 3D model of the area of interest,
enabling the Swarm Commander’s increased situation awareness while controlling the swarm.

FIGURE 7. The percentage of missions successfully tasking platforms
to each survey point vs. the number of platforms deployed.

FIGURE 6. Map of the Camp Shelby CACTF annotated with
deployment locations and buildings chosen for surveillance.

[MOBILE PLATFORMS] [MOBILE PLATFORMS]

0%

25%

50%

75%

100%

0 10 20 30
Number of Agents

Pe
rc

en
ta

ge
 o

f S
uc

ce
ss

fu
l S

ur
ve

y
M

is
si

on
s

GetMobile December 2020 | Volume 24, Issue 424 25December 2020 | Volume 24, Issue 4 GetMobile

A. Operational Phases
To illustrate how CCAST services are used
to organize, compose and execute complex
swarm missions, we will consider ordered
phases of operation:

1) Initial Survey of the Area of Operations
CCAST first surveys the mission area with
high-resolution, high-accuracy mapping
platforms. The output of this stage is a geo-
rectified 3D model from which we derive:
• A high-resolution georectified ortho-

mosaic for 2D situation awareness
displays.

• Digital terrain and surface models.
• A categorized point cloud providing

high-level navigation guidance to
plot near-optimal courses avoiding
buildings, cliffs, etc., while preferring
advantageous terrain.
The 3D model also provides realistic

scenes for our simulator and background for
the virtual reality swarm control interface,
I3 (10).

2) Mission Planning
CCAST provides the interactive Swarm
Tactics and Operations Mission Planner
(STOMP) tool for building mission plans
(see Figure 11). STOMP integrates with
the multi-resolution Swarm Simulation
environment to rapidly test, evaluate, and
refine those plans, providing near-real-time
insights to the mission developer through
STOMP. Mission plans can be persisted
and shared between instances of STOMP,
enabling plans to be created long before
mission start, but modified right until they
are instantiated and launched.

3) Instantiating the Mission Plan
Once platforms have been staged for launch
and powered on, the operator loads the
pre-configured mission plan. The plan is
instantiated using a constraint optimization
approach by binding available platforms
on the network to roles or groups in the
plan. Once fully instantiated, the Swarm
Commander enters the virtual reality I3
interface.

4) Controlling the Swarm
During Operation
Even the largest CCAST swarms are
intended to be overseen by a single Swarm
Commander. I3 allows commanders to

visualize and control execution of mission
plans. The Swarm Commander monitors
progress from within I3 and triggers
additional actions responding to unfolding
scenario information.

5) Automatic Mission Execution
Monitoring
During the entire mission, the CCAST
framework automatically monitors each
platform and overall progress against
the plan. Each platform’s autonomous
agent logic constantly monitors platform
health and the status of other nearby
agents along with their progress towards
shared goals. Agents can also dynamically
request help from other platforms. For
instance, a platform sensing low battery
will automatically request a replacement to
pick-up where it left-off; or a platform that
encounters a condition or threat will request
backup from a better positioned agent to
manage the detected threat.

6) Safety and Remote Monitoring
The positions and status of CCAST platforms
can be monitored both on-site (e.g., by safety
spotters) and remotely in near-real-time,
using a variety of displays, ranging from
heads-up augmented reality interfaces, to
a common Android phone running the
Android Team Awareness Kit (ATAK) for
situation awareness [22].

B. Exercise Observations
Agents autonomously respond to environ-
mental stimuli, real (e.g., encountering
an unexpected obstacle) and simulated,
and report these events back to the swarm
dispatcher which aggregates, logs, and
forwards portions to an exercise evaluator’s
framework. Given many simultaneous
streams of agent telemetry, and the lack of
definitive context for many common events
(e.g., why an agent followed a given path
plan), thorough quantitative assessments
for swarm exercises are still works in
progress. At current maturity, we instead
rely on a combination of readily understood
aggregate metrics, such as swarm scale,
and empirical observations of high-level
behaviors. Defining and accurately capturing
new swarm metrics is ongoing research
to enable baselines as future points of
comparison.

1) Coordination
CCAST implements primitives and algorithms
for various forms of multi-agent coordination
including consensus and deconfliction.
The coordination algorithms are of two
approaches: 1) centralized coordination where
an explicit pre-agreed-upon agent makes a
decision for the group, or 2) decentralized
coordination where a dynamically elected
leader makes those decisions. Decentralized
coordination offers various election strategies

and re-election criteria. Decentralization has
higher computational and communication
overhead, but effectively eliminates single
points of failure. For the FX-3 evaluation
exercise, most CCAST tactics used a
centralized coordination model because the
underlying network (LTE) was centralized.
In that configuration, distributed coordination
offered little advantage because loss of a
backhaul link stopped all communications.
During the experiment, there were no aerial
platform-on-platform collisions. Throughout
the exercises, whenever a platform issued an
automated call for support or replacement
(e.g., when low battery prevented completing
an assigned task), it was answered with an
additional or replacement platform until we
had exhausted all platforms held in reserve.

2) Navigation
Environmental obstacle avoidance worked
well throughout the exercise, with some
exceptions. Most environmental collisions
occurred with powerlines and road signs –
i.e., small items that were not captured well
in 3D models and needed manual addition
as obstacles. Dynamic obstacle avoidance
functioned fairly well, and was likely overly
conservative, as we experienced no collisions,
but did experience deadlock conditions
where platforms could not find safe paths
around other platforms, requiring manual
intervention.

Ground rovers have more constraints on
their motion, so safe path planning is more
complex. Our rovers struggled to navigate
over some terrain – particularly muddy areas,
necessitating preference for paved roads in
path planning. Since our navigation pipeline
offers characterization of point clouds, it was
straightforward to add this preference.

CCAST’s GPS-denied SLAM stack
enabled rover exploration of indoor spaces.

On several occasions, rovers successfully
entered buildings and explored portions
of the floorplan. However, we often lost
network connectivity when entering
the concrete buildings. In consequence,
determining how well the rovers functioned
indoors was severely hampered. In the few
cases where a rover made it back outside
after exploring a building, our disruption-
tolerant networking successfully queued
and sent information collected during their
disconnected interior exploration.

3) Scale
As the on-site exercise period progressed,
we were able to deploy larger-sized swarms,
cover more area, and penetrate more
complex environments (e.g., exploring
GPS-denied areas). Figure 11 shows maps
of the area of interest where each panel
represents a different experimental run with
platform location reports (represented by
blue dots connected by red lines). With each
new experimental run, panels A through F
show a general increase in area covered and
larger numbers of platforms deployed. In our
largest run, the CCAST team deployed more
than 60 platforms in the swarm and found
more than 180 unique April Tags.

LESSONS LEARNED
AND NEXT STEPS
The CCAST team has learned many lessons
in the course of development and also
identified a number of open questions. One
lesson learned is that there is a minimum set
of capabilities necessary for swarm agents to
interoperate safely, which includes detection of
other agents with a sufficient time horizon to
plan and execute safe trajectories in response.
This capability can be satisfied by information
exchange (as in CCAST), direct detection, or
centralized control, with tradeoffs among cost,

FIGURE 12. Increasing scale of vehicles deployed and area covered.

[MOBILE PLATFORMS] [MOBILE PLATFORMS]

size, and network requirements associated
with each approach. Another key lesson
is that operator overload must be addressed
as a first order concern in swarm systems,
before optimizing for operational efficiency.
Platforms affordable enough to scale to large
swarms do not have the bulky, high-fidelity
sensors or power-hungry computational
resources necessary for long-term unsuper-
vised autonomy, and thus require the human
commander to have persistent and reliable
situation awareness at a glance. Key open
questions remain about how to design and
build swarm systems suitable for a range
of possible operating environments. Large
open spaces where agents can operate at
high speeds and maintain conservative
safety distances call for very different design
choices than the congested pseudo-urban
environments in which we have tested
CCAST. The operator’s environment is also
a key parameter for system design. CCAST’s
VR interface is optimized for immersion
and multi-modal inputs, but other contexts
require a “heads up” display or for the
operator to have free hands. The choices
made for CCAST’s I3 component cannot
simply be ported to fundamentally different
form factors, and adapting to other constraint
sets will require further work on identifying
the set of generalizable requirements for
such a user interface.

CCAST is currently under active
development, with ongoing goals of
increasing scale to 250+ simultaneously
deployed platforms, continuing to simplify
and refine integration points, and increasing
the level of closed-loop autonomy – for both
individual agents and the swarm as a whole.
As these three technical thrusts co-evolve,
we expect to gain further insights into the
management of cooperative, heterogeneous
semi-autonomous systems at previously
untested scales.

CONCLUSION
We have introduced and described at a high
level the elements of the CCAST drone
swarm framework for organizing large
collections of autonomous platforms into
a cohesive mission-focused capability. It is
a comprehensive set of methods, services,
capabilities and means for evolution and
extension, going from organizing, testing
and executing drone swarm tactics to
complete missions cooperatively executed

FIGURE 11. The Swarm Tactics Operations and Mission Planning (STOMP) tool.

GetMobile December 2020 | Volume 24, Issue 426 27December 2020 | Volume 24, Issue 4 GetMobile

by large collections of aerial and ground
platforms. To our knowledge, it is the most
comprehensive framework available to
explore the benefits and costs of automated
and semi-automated large-scale drone
technology. Live field experiments have
shown the viability of the CCAST approach
toward organizing and supporting drone
swarm activity, and demonstrated upward
of 60 independent platforms operating
together under the control of a single
mission commander.

Experimentation included integration
with five external collaborators, demonstra-
ting the utility of the CCAST architecture.
We have taken a number of steps to ensure
that externally developed capabilities can
interoperate and integrate effectively into
our swarm ecosystem. 1) We have developed
an architecture that is open and extensible,
including interfaces with commonly used
standardized tools (e.g., Robot Operating
System (ROS), PX4, ArduPilot). 2) We
have designed simulation and hardware
interfaces to maximize transparent code reuse
between the two. 3) We have developed
CCAST training materials to assist with

development and interoperability issues. We
encourage outside organizations to consider
integration and evaluation experiments with
CCAST in the future.

A video summarizing the FX3 CCAST
drone swarm exercise is available online at
https://youtu.be/00jUHD3LBsQ n

Acknowledgment
The authors would like to acknowledge
DARPA sponsorship of this activity, in
particular the program manager, Dr. Timothy
Chung, the government evaluation team,
Naval Information Warfare Systems Com-
mand (NIWC) Pacific, and all of the technolo-
gist participants. The views, opinions and/or
findings expressed are those of the authors and
should not be interpreted as representing the
official views or policies of the Department
of Defense or the U.S. Government.

Shane Clark is a Senior Scientist at Raytheon
BBN Technologies, where he leads the Unmanned
Innovations Lab. His recent work focuses on
swarming and collaborative autonomous
systems. He received his PhD at the University
of Massachusetts Amherst in 2013.
shane.clark@raytheon.com

Kyle Usbeck is a Lead Scientist and Engineer
at Systems & Technology Research (STR),
where he specializes in collaborative
autonomy. Previously, he worked at Raytheon
BBN Technologies, where he founded the
Unmanned Innovation Lab and led research
and development projects involving
unmanned autonomous systems. He holds a
MS and BS in Computer Science from Drexel
University, and is a senior member of the ACM
and IEEE. kyle.usbeck@stresearch.com

David Diller is a Lead Scientist and Group
Lead at Raytheon BBN Technologies, where
he is involved in projects at the intersec-
tion between people and complex systems,
including simulation and game-based training
and tutoring, autonomous systems, and situ-
ational awareness systems. He has a Masters
in Computer Science and a PhD in Cognitive
Psychology. david.diller@raytheon.com

Richard Schantz is a Principal Scientist
at Raytheon BBN Technologies, where he
serves as a technical advisor to projects
pursuing advanced research in distributed
systems technology. He has been engaged in
middleware and distributed object-computing
research from its concept origination with the
earliest Internet to the present. He received
his PhD in Computer Science from Stony Brook
University in 1974 and is an ACM Fellow.
richard.schantz@raytheon.com

REFERENCES
[1] Samuel Greengard. November 2019. When

drones fly. CACM, Volume 62, No. 11, 16-18.
[2] Defense Advanced Research Projects Agency,

“OFFensive Swarm-Enabled Tactics (OFFSET).”
https://www.darpa.mil/work-with-us/offensive-
swarm-enabled-tactics/.

[3] Georgy Skorobogatov, Cristina Barrado Muxí,
and Esther Salamí San Juan. 2020. Multiple UAV
systems: A survey. Unmanned Systems 8.2, 149-169.

[4] Timothy H. Chung, et al. 2016. Live-fly, large-scale
field experimentation for large numbers of fixed-
wing UAVs. 2016 IEEE International Conference
on Robotics and Automation (ICRA). IEEE.

[5] Kevin ZY Ang, et al. 2018. High-precision multi-
UAV teaming for the first outdoor night show in
Singapore. Unmanned Systems 6.0: 39-65.

[6] CNBC, “Behind the scenes as Intel sets a world
record for flying over 2,000 drones at once.”
https://www.cnbc.com/2018/07/17/intel-breaks-
world-record-2018-drones.html

[7] Melanie Schranz, et al. April 2020. Swarm robotic
behaviors and current applications, Frontiers in
Robotics and AI, Volume 7.

[8] Michael Rubenstein, Christian Ahler, and
Radhika Nagpal. 2012. Kilobot: A low cost scalable
robot system for collective behaviors. 2012
IEEE International Conference on Robotics and
Automation. IEEE.

[9] Jose A. Millan-Romera, et al. 2019. ROS-MAGNA,
a ROS-based framework for the definition and
management of multi-UAS cooperative missions.

2019 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE, 2019.

[10] Jose-Luis Sanchez-Lopez, et al. 2016.
Aerostack: An architecture and open-source
software framework for aerial robotics.
2016 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE.

[11] Vivek Varadharajan, et al. 2017. A software
ecosystem for autonomous UAV swarms.
International Symposium on Aerial Robotics.

[12] Soon-Jo Chung, et al. 2018. A survey on aerial
swarm robotics. IEEE Transactions on Robotics
34.4: 837-855.

[13] Senthil Hariharan Arul, et al. 2019. LSwarm:
Efficient collision avoidance for large swarms with
coverage constraints in complex urban scenes.
IEEE Robotics and Automation Letters 4.4:
3940-3947.

[14] Kourosh Naderi, Joose Rajamäki, and Perttu
Hämäläinen. 2015. RT-RRT* a real-time path
planning algorithm based on RRT. Proceedings of
the 8th ACM SIGGRAPH Conference on Motion
in Games. 2015.

[15] Nathan Koenig, and Andrew Howard. 2004.
Design and use paradigms for gazebo, an open-
source multi-robot simulator. 2004 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566).
Vol. 3. IEEE.

[16] Edwin Olson. 2011. AprilTag: A robust and
flexible visual fiducial system. 2011 IEEE

International Conference on Robotics and
Automation. IEEE.

[17] Shital Shah, et al. 2018. Airsim: High-fidelity
visual and physical simulation for autonomous
vehicles. Field and Service Robotics Conference.
Springer, Cham.

[18] P. Walker, et al. 2019. A playbook-based
interface for human control of swarms. Human
Performance in Automated and Autonomous
Systems: Emerging Issues and Practical Perspectives.

[19] Raspberry Pi Foundation, 2020.“Buy a
Raspberry Pi 3 Model B – Raspberry Pi.” https://
www.raspberrypi.org/products/raspberry-pi-3-
model-b/.

[20] Raspberry Pi Foundation, 2020. “Buy a Camera
Module V2 – Raspberry Pi.” https://www.
raspberrypi.org/products/camera-module-v2/.

[21] WWingtra AG. WingtraOne – Mapping drone
for high-accuracy aerial surveys. https://wingtra.
com/mapping-drone-wingtraone/.

[22] Kyle Usbeck, et al. 2015. Improving situation
awareness with the Android Team Awareness
Kit (ATAK). International Society for Optics
and Photonics. Sensors, and Command,
Control, Communications, and Intelligence (C3I)
Technologies for Homeland Security, Defense,
and Law Enforcement XIV. Vol. 9456.
International Society for Optics and Photonics.

[23] Pixhawk: https://pixhawk.org
[24] MAVLink: https://mavlink.io/en/
[25] Github: https://github.com/bbnsclark

[MOBILE PLATFORMS]

