
Accepted Manuscript

Operational semantics of proto

Mirko Viroli, Jacob Beal, Kyle Usbeck

PII: S0167-6423(12)00214-6
DOI: 10.1016/j.scico.2012.12.003
Reference: SCICO 1485

To appear in: Science of Computer Programming

Received date: 7 August 2011
Revised date: 28 April 2012
Accepted date: 10 October 2012

Please cite this article as: M. Viroli, J. Beal, K. Usbeck, Operational semantics of proto,
Science of Computer Programming (2012), doi:10.1016/j.scico.2012.12.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.scico.2012.12.003

Operational Semantics of Proto

Mirko Virolia, Jacob Bealb, Kyle Usbeckb

aAlma Mater Studiorum – Università di Bologna, Via Venezia 52, 47521 Cesena (FC),
Italy

bBBN Technologies, 10 Moulton Street, Cambridge, MA 02138, USA

Abstract

The Proto spatial computing language [1] simplifies the creation of scalable,
robust, distributed programs by abstracting a network of locally communicat-
ing devices as a continuous geometric manifold. However, Proto’s successful
application in a number of domains is challenging its coherence across dif-
ferent platforms and distributions. We thus present a complete operational
semantics for the Proto language, as executed asynchronously on a network
of fast message-passing devices. This semantics covers all of the operations
of the three space-time operator families unique to Proto—restriction, feed-
back, and neighborhood—as well as the current pointwise operations that it
shares with most other languages. This formalization will provide a refer-
ence to aid implementers in preserving language coherence across platforms,
domains, and distributions. The formalization process has also advanced the
Proto language in several ways, which we explain in detail.

Keywords: spatial computing, distributed algorithms, amorphous medium,
operational semantics, Proto

1. Introduction and Motivation

As the scale and variety of deployed and emerging distributed systems
continues to increase, the challenges of creating scalable, robust aggregate be-

IPartial support for this work was provided by the EU FP7 project “SAPERE - Self-
aware Pervasive Service Ecosystems” under contract No. 256873 and by DARPA DSO
under contract W91CRB-11-C-0052; the views and conclusions contained in this document
are those of the authors and not those of the sponsors or the US or EU government.

Email addresses: mirko.viroli@unibo.it (Mirko Viroli), jakebeal@bbn.com
(Jacob Beal), kusbeck@bbn.com (Kyle Usbeck)

Preprint submitted to Science of Computer Programming October 23, 2012

havior are increasing. One large class of these systems are spatial computers—
potentially large collections of devices distributed to fill some space, such that
the difficulty of moving information between devices is strongly dependent
on the distance separating them. Examples of spatial computers include
sensor networks, mobile ad-hoc networks (MANETs), colonies of engineered
bacteria, robotic swarms, and pervasive computing systems. Aggregate-level
programming and control of such systems is an important and unresolved
challenge. Many different approaches have been proposed, most of which
are surveyed in [2]. They include, among the others, distributed logic pro-
gramming [3, 4], viral tuple-passing [5, 6], chemical-like reactions [7, 8, 9],
abstract graph algorithms [10], spatial data streaming [11], and topological
surgery [12], none of which has yet proven successful enough to be adopted
into widespread use.

One promising approach to the programming and control of such sys-
tems is to view the network of devices as a discrete approximation of the
space through which they are distributed. The Proto spatial computing
language [1] embraces this approach: a program is specified in terms of geo-
metric computations and information flow on a continuous manifold1. These
aggregate-level programs are automatically transformed into a set of local
interactions between discrete devices, which approximate the desired global
behavior. This approach has advantages for scalability, since more devices
are simply a better approximation of the continuous model; for portability,
since changing to a different platform just means changing how the continu-
ous model is approximated; and for robustness, since small changes are just
changes in approximation quality and large changes appear as changes in
manifold structure, which geometric computations inherently adapt to [13].
Moreover, Proto has already been successfully applied to problems in such
diverse areas as sensor networks [14], swarm and modular robotics [15], and
synthetic biology [16, 17].

The breadth, however, is becoming a challenge to the coherence of Proto,
as different platforms have very different demands and execution characteris-
tics, and the number of platforms to which Proto is being applied is steadily
increasing. Although the continuous abstraction of Proto is the same across
all of these platforms, the details of how this is approximated in actual eval-

1A manifold is a topological space that locally resembles Euclidean space, but globally
can be more complex.

2

uation are necessarily different. It would thus be easy for different versions
of Proto to start diverging in implementation and effective semantics, par-
ticularly since the current reference implementation of the Proto tool-chain
is distributed as free and open source software [18].

We thus believe that is it imperative to establish a formal semantics for
Proto, and in this paper we do so, building on the core Proto semantics
developed in [19], properly extended with a special “memory trees” rep-
resentation of device state, enabling us to cover the entirety of Proto, in-
cluding variable definitions, function calls, and actuation. Accordingly, we
begin with a brief review of Proto, then present an operational semantics
for the complete current form of the Proto language. As Proto is an inher-
ently distributed language, the semantics of program execution also depend
on the nature of communication between devices; we thus include the most
frequently used Proto network model, of asynchronous execution on a net-
work of fast message-passing devices. The main technical difficulties in the
design of the proposed semantics include: (i) splitting the formalisation in
two orthogonal parts dealing with device internals and with platform issues;
(ii) designing a mechanism of evaluation contexts allowing us to provide the
semantic of each language construct into a single transition rule; (iii) con-
ceiving the “memory trees” concept, by which we keep track of the state of
variables in a computing device, and support interactions only with neighbor
devices having compatible trees; and (iv) designing each transition rule so
as to couple evaluation of expressions with a proper traversal of the memory
tree.

The formalization we develop may thus serve as a reference for imple-
menters, helping to preserve the coherence of the language across the in-
creasing number of platforms, application domains, and distributions. We
also note several advancements in the Proto language that this formalization
process has produced, including (i) a new indexing semantics for function
calls extending the set of allowed Proto programs (beyond those where total
inlining was possible) and reducing the binary size of programs, (ii) reduc-
ing computation delay in expressions combining neighbouring and feedbacks
operations, and (iii) detecting a number of cases of ill-structured Proto pro-
grams.

The remainder of this paper is organized as follows:

§ Section 2 describes the development of the domain-specific language,
Proto, and gives a brief tutorial for its use.

3

§ Section 3 formalizes the semantics of the Proto language for individual
devices.

§ Section 4 formalizes a complementary platform semantics that describes
the evaluation of Proto on a network of devices.

§ Section 5 discusses the important findings of this work, and its impli-
cations for the Proto language.

2. The Proto Language

In this section, we give a brief review of the Proto language, then explain
the purpose and benefits of programming a spatial computer using the Proto
domain-specific language. We shall also occasionally refer to elements of MIT
Proto [18], a suite of tools that includes a compiler and a virtual machine
(called ProtoKernel [20]), that comprise the current reference implementation
of Proto. In this paper, we distinguish among these by referring to Proto as
the language, and specifically addressing the compiler and virtual machine
(VM) respectively.

2.1. Proto as a Domain-Specific Language

Proto is a Domain-Specific Language (DSL) for representing the de-
scription of aggregate device behavior in a spatial computer. According to
Mernik et al., DSLs are,

“languages tailored to a specific application domain. They of-
fer substantial gains in expressiveness and ease of use compared
with general-purpose programming languages in their domain of
application” [21].

To this definition, Proto allows programmers to write complex, distributed
programs for potentially large numbers of devices in a simple and concise
manner.

The key insight in creating the Proto DSL syntax is the identification of
a set of composable constructs inherent in the spatial computing domain.
Proto creates scalable distributed applications by representing 1) groups of
locally communicating devices as continuous manifolds and 2) composable
operations as manipulations of those geometric manifolds. Thus, interpreta-
tion of the Proto DSL yields space-time manipulations on continuous mani-
folds approximated by the discrete network of devices.

4

There are four classes of Proto operations, separated by their interaction
with space and time (see Figure 1). Pointwise operations (e.g., +, sqrt,
tup, and mux) involve neither space nor time. Restriction operations (e.g.,
if) restrict program execution to a sub-space. Feedback operations (e.g.,
rep) evolve device state in continuous time. Neighborhood operations (e.g.,
nbr, int-hood, min-hood) express information flow through the spatial
computer by summarizing computations over neighbors—the set of devices
within communication range.

No Space Space
No Time Pointwise Restriction

Time Feedback Neighborhood

Figure 1: The four classes of Proto operations, separated by their interaction with space
and time.

The Proto DSL manipulates the spatial computer in both space and time
via composition of these different classes of operators.

Proto can also be viewed as an application generator [22], a tool derived
from a formal language definition. In the case of Proto, the formal language
definition is the DSL describing the global system behavior and the derived
tool is the “local” program for the devices in the spatial computer network.
Figure 2 illustrates the process of compiling the global system behavior into
a local program which approximates the continuous behavior on a discrete
network of devices.

2.1.1. Evolution of Proto as a DSL

In this section, we map the history of the Proto DSL development onto
the framework for deciding when and how to develop a DSL given in [21],
with four stages2:

1. Decision,

2. Analysis,

3. Design, and

4. Implementation.

2[21] includes a fifth stage, Deployment, which is out of the scope of both Mernik et al.’s
study, and our discussion in this paper.

5

(def gradient (src) ...)
(def distance (src dst) ...)
(def dilate (src n)
 (<= (gradient src) n))
(def channel (src dst width)
 (let* ((d (distance src dst))
 (trail (<= (+ (gradient src)
 (gradient dst))
 d)))
 (dilate trail width)))

neighborhood

device

Device
Kernel

evaluation

global to local
compilation

discrete
approximation

platform
specificity &
optimization

Figure 2: The Proto compiler acts as an application generator by compiling the global
spatial computer behavior into programs that are executed on the discrete network of
devices that approximate the continuous geometric manifold.

Decision. The decision to create a DSL occurred as a direct result of task
automation [21]. In distributed system programming, a repetitive pattern
(described in [23]) often occurs. This pattern has the following generic steps:

• Gather data from neighbors,

• Do some computation separately on each neighbor’s data, and

• Return a function combining the results from the neighbors.

Computations incorporating such patterns are often further organized into
rounds, where in each round all neighbor data is gathered in parallel over
some instance of time, then all computations run to completion using the
current neighbor data before the next round begins.

The fact that this pattern is independent of neighborhood size, network
structure, and data content makes it a perfect candidate for abstracting into
its own DSL as an “enabler of reuse,” as explained in [21].

Analysis. An informal domain analysis [21] concluded in the key insight ex-
plained in [24]: that the repetitive pattern, now called a neighborhood compu-
tation, works in continuous space. Utilizing a continuous space abstraction

6

in Proto allowed for, among other things, the possibility to more easily prove
(in continuous semantics) that specific local device actions result in a certain
global (a.k.a. “emergent”) behavior. To this day, neighborhood operations
follow the original pattern, although there have been many improvements to
the original concept (i.e., restriction, continuous time).

Design. Proto is designed as a piggyback [21] on a LISP-style syntax, al-
though not a LISP itself, with S-expressions as the primary notation. Lan-
guage exploitation was used primarily as a method of providing familiarity to
end-users, with the added benefit that the LISP style offers an elegant way
of composing individual operations into a global behavior. Since the original
choice to use LISP-style notation, it has been shown that some features of
LISP are impossible in the Proto DSL (e.g., arbitrary first-class functions [25];
see also discussion below in Section 5), however the syntax still provides a
clean abstraction for the many newly-added language features.

Implementation. During the specification of the Proto language, the Proto
compiler and virtual machine were also being developed. The implemen-
tation of the compiler was primarily driven by the requirement to create
local programs from a global behavior description: termed the global-to-local
transformation. Thus, the implementation pattern from [21] was a Com-
piler/application generator.

Simultaneously, the implementation of the original ProtoKernel VM was
driven by the requirement to execute the generated applications on small,
cheap embedded devices, such as Mica2 Motes. As the Proto VM was ported
to more device types, each with differing feature-sets, a plug-in architecture
was adopted as the mechanism for specifying device-specific behavior (i.e.,
sensors and actuators). Now, with Proto being used in a wider variety of
domains and across multiple platforms, the specification of Proto’s core op-
erational semantics is vital to ensuring consistency between implementations.

2.2. Using Proto

Proto is a LISP-like, purely functional language. Proto’s prefix opera-
tor statements are associated using parenthesis. Program 1 shows a simple
(pointwise) addition expression executing on a small network.

Although this looks syntactically identical to a LISP addition, at a global
level, Program 1 is manipulating not numbers but fields, functions that map
points in space to data values. There are two main types of values for such

7

Program 1 A simple pointwise operator in Proto.

(+ 2 3)

fields (as will be explained in detail later in Section 3.2.1): Local valued
fields, such as scalars and tuples, and Field valued fields, where each device
maps to a set of values from neighboring devices. In the case of Program 1,
the program is adding a local field that maps all devices to the scalar value
2 to another local field that maps all devices to the scalar value 3.

Proto operators work over some combination of space and time. Pro-
gram 2 shows the any-hood and nbr operators working over space and time.
The nbr operator collects information from each neighboring device—so from
some distance away, and from some time in the past since the information
does not travel instantaneously. In this case, it returns a map of neighbors
to the value of the neighbor’s “sensor number one” (a Boolean-valued test
sensor used for debugging in the MIT Proto simulator). The any-hood op-
erator summarizes these results, returning true if any of the neighbors have
(sense 1) enabled. The blue operator simply enables a blue LED on the
device if the input is true.

The rep command (of the feedback operator class) evolves a variable
over time. In Program 3, the variable timer is initialized to 0 and evolves
by adding (dt), the change in time since the program was last evaluated.
Therefore, the program is essentially updating the time on each device, in
continuous time (though implemented by discrete rounds of evaluation).

By combining the manipulation of space and time, Proto can transport
information over multiple hops of the spatial computer network. In Pro-
gram 4, the distance-to function is first defined and then evaluated. Its
definition is a combination of space and time calculations.

8

Program 2 An example of operators that work in space and time.

(blue (any-hood (nbr (sense 1))))

Program 3 An example of an operator that works in time. Large numbers
in the lower left show elapsed seconds of simulated time.

(rep timer 0 (+ timer (dt)))

9

In the definition of distance-to in Program 4, the variable, d, is initial-
ized to infinity and evolves by finding the minimum distance to the source,
src. The minimum distance is defined as the lowest (dictated by min-hood)
sum of the distance to each neighbor (nbr-range) plus that neighbor’s dis-
tance to the source, (nbr d). The mux operator is a “multiplexer” operator,
similar to a branch, which evaluates both branches, then selects one value
to return. In this program, mux is used to select between the general case
and the base case where the distance to the source device is zero. The eval-
uation performs a relaxation computation, applying the triangle inequality
over neighbors until each devices already returns its distance to the nearest
device whose (sense 1) is enabled.

Program 4 Combining space and time yields long-range information flow.

(def distance-to (src)
(rep d inf (mux src 0

(min-hood
(+ (nbr d)

(nbr-range)))))
(distance-to (sense 1))

The notion of restriction dictates the space in which a program executes.
In other words, restriction is the method by which Proto controls where
an expression is evaluated. The syntax for restriction in Proto uses the if

construct, which takes three arguments: a condition, a true-branch, and a
false-branch. If the condition evaluates to true, then only the true-branch is
evaluated; if it is false then only the false-branch is evaluated. Program 5
uses restriction to enable different color LEDs based on the distance away
from a source device.

In Program 5, the restriction condition splits the space into the set of
devices whose distance to a (sense 1) device is less than 50 (true branch),
and those whose distance is greater-than or equal to 50 (false branch). The
devices in the true branch enable their blue LED, whereas those in the false
branch enable their green LED.

10

Program 5 Restriction determines the space in which a program executes.

(if (< (distance-to
(sense 1)) 50)

(blue 1)
(green 1))

Proto can also control device movement by computing mass-flow over
vector fields, as described in [15]. Program 6 shows an example of Proto
device movement using the mov operator.

The 2D motion example in Program 6 is similar to the last program, but
instead of switching a LED the if statement selects between two possible
vectors. Devices within 50 of a (sense 1) device get a vector created with
tup with a first element of 10 and second element of 20. Devices further
away have a different vector, with first element 0 and second element −10.
The composite vector field, displayed in the simulator as a blue line with
a magenta tip to indicate direction, is then fed to the mov operator, which
will cause each device to move with the speed and direction dictated by its
vector.

3. Language Semantics

We now provide the operational semantics for the Proto language, when
evaluated on an asynchronous network of discrete devices with fast commu-
nication. The fast communication assumption is that the time for a message
to be transmitted and propagate through the carrier medium from device to
device is much faster than a round of communication (e.g. radio packet trans-
mission over short range). This assumption is just to allow a simpler seman-
tics that treats sending and receiving of messages as an atomic event—this
assumption can be weakened to allow slow, long duration, or lossy communi-
cation without impacting the correctness of the semantics (though particular
distributed algorithms may have more stringent requirements).

11

Program 6 Support of device movement as mass-flow over vector fields.

(mov (if (< (distance-to
(sense 1)) 50)

(tup 10 20)
(tup 0 -10)))

Our specification is divided in two parts, described in this section and
Section 4. The first part, presented in this section, concerns internal de-
vice behavior: we present notation and terminology (Section 3.1), then the
data types that will be used and relevant language syntax (Section 3.2) and
a syntax over the state of a device during evaluation (Section 3.3). We
then use these to provide an operational semantics that describes the exe-
cution of Proto programs with respect to a single device and its local state
(Section 3.4). This semantics corresponds to a correct implementation of
ProtoKernel [20] on an individual device, ignoring optional features such as
transmission frequency backoff. The second part provides a complementary
semantics for the platform on which Proto is executed, describing how de-
vices interact with their environment, how messages are exchanged between
devices, and how topology changes should be handled.

Our formalization necessarily combines techniques typical of functional
languages (since Proto is closely related to LISP) and process algebras (since
it is used to program message exchanges in a distributed system, like in
π-calculus [26]). Similar combined approaches have previously been used
elsewhere; see for example [27], [28]. The formalization we present in this
paper is an extension of the core Proto semantics previously formalized in
[19]: the current work introduces “memory trees” as a fundamentally new
representation of state, enabling us to cover the entirety of Proto, including
variable definitions, function calls, and actuation.

12

Symbol Meaning
xy a meta-variable of type x named y
e a tokenized text expression
v a variable name
B Script indicates a Proto data type; e.g., B is any Boolean
a a device
x an ordered set of x
|x| size of set x
xi ith element of ordered set x
• the empty set

s = 〈Σ〉e execution state of a device
Σ store of memory at a device
| composition operator for (multi)sets
{x} a set or sequence of elements matching pattern x
� A “hole” indicating a current focus of evaluation
τ A memory tree
T A memory context tree (a memory tree with one hole)
E An expression context tree (an expression with one hole)

XJxK A memory or expression tree made by replacing the hole of X with x.
⊥ No result
σ Export
. Neighbor Alignment
→ Device state transition
→∗ Closure of device state transitions
a 7→ τ Imported Message τ from device a
⊗ Extract element from set

a
V7−→ a′ Network link between a and a′, with metric information V

a � [τ]a′ Pending message τ from a to a′

� Platform state transition

Table 1: Table of symbols used in describing semantics

3.1. Notation and Terminology

We adapt our syntactic notation and terminology from standard and
widely accepted frameworks like FJ [29]. Our transition rules use natu-
ral semantics: the precondition is generally over a closure →∗ of transition
rules. We have preferred this form for two reasons: first, it produces a
more compact semantics and second, it allows for more flexibility in the or-
dering of operations in the implementation. This choice of semantics does
raise two issues, however: first, there is the problem of distinguishing be-
tween non-termination and errors. At present, however, Proto does not have
any runtime error-handling facilities, and so the two are also typically in-

13

distinguishable in practice, both leading to program crash through bounds
violations. We thus defer this challenge for future work when the problem
of distributed error-handling will be addressed. Second, it will be important
to prove that all paths are equivalent. The complexity of the semantics puts
proving this and other relevant properties beyond the scope of this paper,
and we reserve this effort as well for future work.

In formulating transition rules, we refer to metavariables as variables used
in the formalization, as schema of formulas or terms—to distinguish them
from the notion of variables used within the Proto language. We adopt a
notation where a metavariable x is shown in typewriter font, a literal expres-
sion x is shown in bold typewriter font, and a data type X is shown in script.
We use superscript to distinguish instances of metavariables, e.g., x, x′, and
xa are three different metavariables of category x.

Given any metavariable x, metavariable x is used to denote a sequence
of zero or more elements of kind x. We let x1, . . . , xn be the elements of
a sequence, |x| be the length of the sequence, and taili(x) be the sequence
xi+1, xi+2, . . . , xn Finally, • shall represent the empty sequence, and we define
both •i and taili(•) to be •.

For unordered collections, we compose elements with operator “|”. This
operator is assumed to be commutative, associative, and to absorb •, thus
forming a multiset composition operator.

Some further ad-hoc notation is added to simplify the management of
sequences and multisets. Given a structure k, we write {k} for a collection
of elements of kind k. We take the type of collection (multiset or sequence)
to be implicit in the kind of k, since we will not define any meta-variable
kinds that are collected in both sets and sequences. If there are sequence
metavariables in k, then these sequences are aligned with one another. For
example, let a be the sequence of neighbors a0, a1, a2, and S the sequence of
scalars 1, 2, 3. Then {a 7→ S} is the field {a0 7→ 1 | a1 7→ 2 | a2 7→ 3} that
maps each neighbor to the corresponding value. We will use this notation
for manipulating subsets of values,

We also add an auxiliary composition operator denoted “⊗”, which will be
used for extracting elements from sets. This acts as a variant of operator “|”
guaranteeing that the multisets on the left and right side have no elements in
common. Formally, we define “⊗” as a partial binary function that yields no
result if the two multisets given as arguments have non-empty intersection,
and yielding their composition by “|” otherwise. We will generally use this
for updating the contents of a set. For example, if F is a field, then matching

14

the expression {a 7→ L} ⊗ F ′ against F extracts one arbitrary element from
the field, leaving the remainder in F ′. For another example, {a 7→ S} ⊗ F ′
extracts all elements with type Scalar.

We shall define particular metavariables as we go; for the convenience of
the reader, we have collected a summary of symbols used in this paper in
Table 1.

3.2. Proto Expressions

We now begin by presenting the content of Proto expressions: first the
data types that are used in Proto computations, followed by the syntax used
by the programmer to express Proto programs.

Any

Field Local

Number Tuple Operator

Scalar Vector

Boolean

Figure 3: Proto data types; arrows indicate parent relationships.

3.2.1. Types in Proto

The data types that are used in Proto computations (Figure 3) are split
into two main categories: Local values, which span numbers, tuples, and
operators, and Field values, which map each member of a set of neighbor
devices to a Local value.

The full set of current Proto types, ranged over by meta-variable t, are:

• Any (A) is any value of any type.

15

• Field (F) is a map from a subset of the device’s neighborhood to Local
values. A field may also be described as a set {a 7→ L}, mapping each
included neighbor a to a Local value.

• Local (L) is any non-Field value: a Number, Tuple, or Operator.

• Operator (O) is a primitive or user-defined function. An operator may
also be described as a pair (arg, e) of its arguments and the expression
for its body, using the syntax defined in the Section 3.2.2. Note that
the use of Operator data types is highly restricted at present, due to
the challenges of distributed first class functions discussed in [30].

• Tuple (T) is an ordered set of k ≥ 0 Local values. Note that all
zero-length tuples are equivalent “null” tuples.

• Number (N) is a Scalar or Vector.

• Scalar (S) is any real number, plus the special values infinity, negative
infinity, and not-a-number, which behave in the usual manner defined
by IEEE floating point standards [IEEE 754-2008].

• Vector (V) is a Tuple of Scalar values. Note that a vector of one
element is semantically equivalent to a scalar.

• Boolean (B) is a Scalar interpreted as a logical value. Any non-zero
value is true, canonically represented by 1; false is represented by 0.

The Field and Tuple types may be further refined by specifying the types
of their contents. We will do this via functional notation. Thus, for example,
type F(S) would be a Field that maps from neighbors to Scalar values, and
type T (B,L,S) would be a Tuple whose first element is a Boolean, whose
second element is a Local, and whose third element is a Scalar. When a
type is excluded, we annotate it as X − Y ; for example, A − O means any
type except for Operators.

In the current implementation of Proto, the compiler attempts to resolve
all types at compile-time, and throws compile errors whenever it is unable
to resolve a type to a “concrete” value—a Scalar, Boolean, Operator, or
a Field or Tuple of concrete values. In our semantics, we will assume that
such type checking has already been performed by the compiler, such that
we need not check dynamically for type mismatches.

16

We will also assume two simple type coercion rules. First, Scalar values
can be coerced to Boolean values by mapping everything non-zero to 1.
We shall thus use the literals true and 1 and false and 0 interchangeably.
Second, Local values can be coerced to Field values by an insertion of the
local operator, described below. We will assume that the first is done
automatically whenever a Scalar is supplied where a Boolean is needed,
and that the second is inserted by the compiler.

Note that although this type system represents the current state of the
art in Proto, this type system is clearly not yet complete as it lacks many of
the standard features of modern languages. Notable missing portions include
text or symbols, structures or objects, and exception handling. As Proto has
been primarily a research language, such missing features have not yet been
an obstacle to its use.

As Proto continues to mature and begins to be put into real-world deploy-
ments, however, such missing features are expected to be added to later ver-
sions of Proto. Since these “standard language” missing features are largely
in the pointwise class of computations on individual devices, adding them is
expected to have little impact on the semantics of Proto. For example, the
first two mentioned, text and objects, are expected to be simple extensions
of the pointwise operators—strutures are syntactic sugar on tuples, while
objects will require some semantic extensions to support methods, inheri-
tance, etc; exception handling will require more careful thought, given the
distributed and asynchronous model of execution in Proto.

3.2.2. Proto Syntax

Proto syntax is based on LISP S-expressions, as a simple way of expressing
functional programs. For this discussion of semantics, we will omit those
portions of Proto syntax that are necessarily resolved at compile-time: macro
handling, language extensions (e.g., platform-specific sensors and actuators
like the (sense 1) debug sensor used above), and code for controlling the
behavior of the compiler.

We shall define metavariable e as any Proto expression, and metavariable
v as any variable name. Figure 4 shows the syntax of Proto expressions: the
essence of any Proto program is a single functional expression e. We shall
refer to the expression containing the entire program as ep.3 Any expression

3Programmers actually write a sequence of expressions e, in normal LISP style, which

17

e is either a local literal value in L (e.g., the number 13), a variable refer-
ence v (e.g., to a function argument x), the application of an operator op to
a possibly empty sequence of expressions e (e.g., (+ x 13)), a stateful or
conditional computation (e.g., an if or letfed statement), or one of several
forms of definition. An operator op may be any of a large variety of built-in
primitives, or may be defined by the user in-place or elsewhere. The argu-
ments arg of an operator are variables v, which may optionally be restricted
to a type t using the form v | t.

e ::= Expressions
L Literal values

| v Variable name
| (op e) Operator calls
| (rep v e e) Stateful computation

| (letfed ((v e e)) e) Generalized stateful computation
| (if e e e) Conditional evaluation

| (let ((v e)) e) Local variable
| (def v e) Global variable
| (def v (arg) e) Function
| (fun (arg) e) Anonymous function

op ::= pointwise | neighbor | summary | io Primitive operators
| v User-defined operator
| (fun (arg) e) Anonymous function

pointwise ::= all | tup | not | elt | + | - | * | / Pointwise operators
| < | > | = | <= | >= | min | max | abs
| floor | ceil | round | pow | sqrt | log
| mod | rnd | sin | cos | tan
| asin | acos | atan2 | sinh | cosh | tanh
| len | vdot | mux

neighbor ::= local | nbr | metric Neighborhood
metric ::= nbr-range | nbr-bearing | nbr-vec Space-time Metrics

| nbr-lag | nbr-delay
summary ::= fold-hood* Neighbor Summary

io ::= hood-radius | infinitesimal | density Universal sensors
| dt | mid | speed | bearing
| mov | flex | set-dt | probe Universal actuators

arg ::= Arguments for functions
v Variable name

| v "|" t Typed variable

Figure 4: Syntax of Proto in BNF, modified to use our symbol conventions: literals are
denoted by bold rather than quotes (except for the "|" in the typed variable expressions),
and sequences are shown with an overbar.

the compiler implicitly wraps together into a single all expression: (all e)

18

A few notes regarding syntax: first, note that the programmer is only
allowed to use Local values as literals, and not Field values. This is because
the set of neighbors is only known at run-time. Since a Field type is a map
from neighbors to values, this means that all Field values must be produced
at run-time, e.g., by means of the nbr and local constructs. Accordingly,
during evaluation we will use an extended syntax that is identical except that
values can be of any type (A) rather than just locals.

Second, note that a number of widely used Proto language constructs are
omitted from this semantics-focused syntax, because they are defined using
macros rather than primitives. Among the notable missing are and and or

(defined using branches), let* (defined as a chain of let expressions), and
summaries like min-hood and any-hood (defined continuously, but on a
discrete network is executed equivalently to fold-hood*, a reduce operator
over neighbor values). As there is no semantic content to these constructs,
we have omitted them for simplicity; most of their definitions may be found
by reading the macros in the core.proto in the MIT Proto distribution. We
have made one exception, regarding the letfed operator used the create
and update state variables: rep is a macro, defined as a letfed of a single
variable, which returns only that variable. However, the rep construct is
useful in explaining how Proto handles state, so we have retained it for
pedagogical reasons.

Finally, note that this is not a minimal semantics: all Proto primitives are
included here, despite the fact that some could be implemented with macros
or functions instead. For example, def of a function could be defined as a
macro that combines def of a variable with an anonymous function. There
are a number of other such examples, particularly mathematical operations
like tan, sqrt, abs, etc.

3.3. Device State

The semantics of evaluation also depends on two types of state: the state
of the program on a given device (e.g., memory, sensors and actuators, values
shared with neighbors), and the state of the evaluation itself (e.g., the order
in which expressions are traversed).

3.3.1. Memory Trees

Just as expressions are tree-structured in Proto, so too are the memory
constructs that are used to track the side-effect state created by evaluating
an expression. Each round, an evaluation will compute a tree of side-effect

19

state, which will then be used in the computation of the next evaluation and
also partially shared with neighbors. The reason for using tree structures in
this way is to ensure that state from different devices, which may have taken
different branches during evaluation, can still be correctly aligned with one
another. For example, in an expression:

(+ (some-complicated-function) (distance-to (sense 1)))

the distance-to computation needs to be able to share state between neigh-
boring devices, even if each neighbor has created a different number of side-
effect states while evaluating the complicated function that precedes it.

We thus introduce the following syntax for memory trees:

τ ::= B | v := A | nbr(L) | τ | (τ)

A memory tree τ is a tree, where the leaves contain information needed
for implementing the space-time operators of Proto: Boolean values indi-
cating which branch of an if was taken, variable assignments v := A that
store state, or nbr(L) expressions containing Local values being exported by
the nbr function. In our notation, we will consider τ to admit only non-
empty trees, while τ also admits the tree •. Pointwise operators (the purely
functional portions of Proto) will generate empty sub-trees (the empty se-
quence tree •). Because these are represented by the empty sequence, they
are absorbed into adjacent tree elements by the following evident relation:

τ , •, τ ′ ≡ τ , τ ′

To illustrate how memory trees are used, let us consider a few cases:

• A purely functional expression such as (+ (+ 1 2) (+ 3 4)) gener-
ates the empty tree •.

• Neighborhood operations like nbr add export leaves into the tree. For
example, the expression

(+ 1 (fold-hood* min inf (+ (nbr 1) (* (nbr-range) (nbr 3)))))

creates the tree nbr(1), nbr(3).

20

• Branching with the if construct creates a sub-tree that starts with a
Boolean value recording the results of the test (the first expression
in the if). The rest of the sub-tree contains state for the evaluated
sub-expression. For example, the expression:

(if (= 8 8)

(+ (fold-hood* min inf (nbr 1))

(if (= 6 7)

(fold-hood* min inf (nbr 2))

(fold-hood* min inf (* (nbr 3) (nbr 4)))))

(fold-hood* min inf (nbr 5)))

creates the tree (true, nbr(1), (false, nbr(3), nbr(4))).

• Stateful computation constructs such as rep generate a tree report-
ing variable assignment. These expressions embed a branch that tests
whether there is already a state in memory. On the first evaluation,
where there is not, the second (initialization) expression is evaluated;
on subsequent evaluations, the third (update) expression is evaluated
instead. For instance, consider this expression (rep x 0 (+ x 1))

implementing a simple counter. When first evaluated, it produces the
memory tree (false, x := 0), initializing x to zero. On the second eval-
uation, x is already in memory, so it instead produces (true, x := 1),
then (true, x := 2) on the third evaluation, and so on.

• Branching constructs reuse a previous sub-tree only if the test (the first
expression) has the same value as in the previous evaluation. Other-
wise, the branch is discarded and replaced. For example, expression:

(rep x 0 (if (= x 0) (rep y 0 (+ 1 y)) 0))

produces this sequence of memory trees:

(false, x := 0)
(true, x := 0, (true, (false, y := 0)))
(true, x := 1, (true, (true, y := 1)))
(true, x := 0, (false))
(true, x := 0, (true, (false, y := 0)))
(true, x := 1, (true, (true, y := 1)))
(true, x := 0, (false))
. . .

21

At any given point during evaluation, only a certain sub-tree of the overall
tree is under consideration. To keep track of it, we introduce the concept of
a memory context tree T (using the notion of evaluation context from [31]),
which is a memory tree with precisely one hole � contained in some leaf T
where:

T ::= � | τ , T, τ | (T) Memory context tree

Such a hole can be filled with a tree τ by notation T JτK, which simply
gives the tree obtained by substituting the hole with τ . We can thus represent
consideration of a sub-tree by T : τ , where τ is the sub-tree and T is the
memory tree with a hole in place of τ , and then reassemble the memory tree
when we are done with T JτK.

Walking and manipulation of trees can be annotated by filling the hole
with another memory context tree: T JT ′K. For instance, by T J(τ ,�, τ ′)K we
indicate a memory context tree in which we can match the sub-tree in which
the hole occurs as (τ ,�, τ ′). Accordingly, T represents a memory context
tree in which the hole has been transferred one step upwards, to the parent
node of where it had been in T J(τ ,�, τ ′)K. To illustrate this, consider the
memory tree:

(true, x := 0, (true, (false, y := 0,�)))

Matching the expression T J(τ ,�, τ ′)K against this memory tree, we find a
match if we set:

T = (true, x := 0, (true,�))
τ = false, y := 0
τ ′ = •

In order to facilitate management of trees across neighbors, we introduce
two auxiliary operators: export and alignment.

Export. The export operator σ is used to filter a memory tree down to only
the state that is to be shared with neighbors. This is done simply by erasing
all occurrences of variable assignments, since only the branching structure
and export values are shared:

σv := A ≡ •
σ(τ) ≡ (στ)
στ ≡ στ1, σtail1(τ)
στ ≡ τ otherwise

22

Note that σ applies to the entire variable assignment, v := A, in the
first rule, which turns variable assignments into empty lists, thereby erasing
them. The rest of the rules distribute σ through the tree. For example, if we
consider a tree τ = (true, x := 0, (false, nbr(4))), its export is:

στ = (true, (false, nbr(4)))

Neighbor Alignment. We define a partial substitution operator T .τ , which is
used to find exported values from neighbors that match the current memory
context tree.

� . nbr(L) ≡ �
� . • ≡ �

(B, τ , T, τ ′) . (B, τa, τ b, τ c) ≡ (B, τa, T . τ b, τ c) if |τ | = |τa| and |τ ′| = |τ c|
(τ , T, τ ′) . (τa, τ b, τ c) ≡ (τa, T . τ b, τ c) if τ1, τ

a
1 /∈ B and |τ | = |τa|

and |τ ′| = |τ c|
T . τ ≡ ⊥ otherwise

The first rule matches a hole with a state export: this will be used to
create fields using values exported by neighbors. The second rule matches
against the empty set, meaning that it is only testing for equivalent branching
structure. This will be used to create fields of space-time metrics or local
values. The next two rules walk the tree while checking that the relevant
structure matches, and the last defines the failure case. The net effect is
that if the hole in the memory context tree T matches with a state export
in the target tree τ , then the result is a memory context tree obtained from
τ by placing a hole exactly where it occurred in T . If the structure of the
trees cannot be aligned, then the function yields no result (indicated as ⊥).
Although it is well defined for all trees, we will only apply it only to trees that
have been filtered for export using σ. As long as the neighbors are evaluating
the same expression (which is generally true in Proto), alignment will never
product ⊥, and thus we will assume that in the future. Some examples of its
use:

(true,�,nbr(2)) . (true,nbr(3),nbr(5)) = (true,�,nbr(5))
(true,�) . (false,nbr(3)) = ⊥

(nbr(1), (true,nbr(9)),�) . (nbr(2), (false),nbr(4)) = (nbr(2), (false),�)
(nbr(1), (true,�),nbr(7)) . (nbr(2), (false),nbr(4)) = ⊥

23

3.3.2. Configuration Syntax

Having established these preliminaries regarding memory trees, we now
describe the full state of a Proto program on a device. This consists of
the program expression itself, a store of memory, state sent to and from
neighbors, metrics regarding neighbors, and sensor and actuator values.

The syntax we use to describe device state is as follows:

s ::= 〈Σ〉e Device state
Σ ::= • | T : τ | io(v := L) | imp(I) | metric(F(V)) | (Σ "|" Σ) Store
I ::= • | a 7→ τ | (I "|" I) Import

The state of a device is the expression e under evaluation and a store Σ
keeping track of side-effects and interaction with the environment. The latter
is a composition, by operator “|”, of four elements:

• The memory T : τ , is a memory tree, split into the sub-tree τ currently
under consideration and the remainder as its memory context tree T .
This is initialized to � : •, and at the end of each evaluation becomes
� : τ , where τ is the full memory tree computed during that evaluation.
This memory persists until the next evaluation, when � : τ will be the
initial state and a new τ ′ computed, and so on.

• The sensor and actuator state io(v := L) holds the sequence of values
being received from sensors or sent to actuators. Each element in the
sequence is a variable assignment associating the name of the sensor or
actuator with its current input/output state.

• The imported messages imp(I) are a set of associations a 7→ τ . There
is one for each neighbor a, associating it with the most recent memory
tree τ received from that neighbor.

• The space-time metrics metric(F(V)) are a collection of best-effort vec-
tors describing the space-time displacement to each neighbor. These are
used for resolving neighborhood metrics operations such as nbr-range
and nbr-delay.

3.3.3. Evaluation Context

The final ingredient needed for our operational semantics is a represen-
tation of the current state of the evaluation itself. We identify the sub-
expression of the program under consideration in the same fashion as we

24

defined the sub-tree under consideration in the memory tree: an evaluation
context E is an expression with one hole � in it, representing the next place
where a sub-expression needs to be evaluated. Likewise, we let notation EJeK
mean evaluation context E after substituting � with expression e. Thus, the
overall program expression ep can always be represented as EJeK, where e is
the current sub-expression under consideration.

Order of evaluation is set by the syntactic definition of evaluation con-
texts:

E ::= � | (op A E e) | (if E e e) | (let ((v A) (v E) (v e)) e) | (def v E)

This syntax sets a sequential order of evaluation for all ordinary operators
op. In if expressions, only the test is unconditionally evaluated—there is a
rule in the operational semantics that determines which branch expression
actually gets evaluated. For local variable definition with let, the variable
definitions are handled in sequential order, then left for rules in the opera-
tional semantics to store the assignments into the state; a similar thing is
done for global variables created with def. All other expressions, such as
rep and letfed, have their evaluation handled directly through rules in the
operational semantics.

To see how evaluation context is used, consider the expression (+ (- 5

1) (* (/ 6 2) 4)). There are two possible matches of this expression with
pattern EJeK: one that sets:

E = (+ � (* (/ 6 2) 4))

e = (- 5 1)

and another that sets:

E = �
e = (+ (- 5 1) (* (/ 6 2) 4))

Of these two, however, only the first has operational semantics that can
apply to evaluate it. This will be generally the case: there may be up to as
many matches as there are levels of expression nesting, but all will chain to
applying an evaluation rule on the innermost matching evaluation context.

In this case, the next evaluation step is thus to compute sub-expression
(- 5 1). Once that has been computed, the expression will be (+ 4 (* (/

25

6 2) 4)) and the next effective match for EJeK with will be:

E = (+ 4 (* � 4))

e = (/ 6 2)

3.4. Operational Semantics

Operational semantics is given by a transition system of the kind (S,→),
where S is the collection of possible device states s (as defined in Sec-
tion 3.3.2) and→⊆ S×S is the transition relation. As is often done, we write
s → s′ as a shorthand for (s, s′) ∈→, meaning that the device of interest
moves from state s to state s′ by an internal computation step. We will use
s →∗ s′ to indicate the transitive closure of this relationship, meaning that
there is some sequence of transitions leading from state s to state s′.

We will describe the operational semantics by standard inference rules for
formulas s→ s′, written using notation:

preconditions
s→ s′

[[RULE-NAME]]

meaning that the transition s → s′ applies whenever the preconditions can
be satisfied. Intuitively, these preconditions can usually be thought of as sub-
computations that implement the transition. Each rule covers a fragment of
the transition relation, specifying the whole as their union.

In the model we present here, we consider a single execution round for a
device, namely:

• As the initial state we consider s = 〈Σ〉ep. As defined above, ep is the
entire program and Σ is a store containing a memory tree (starting as
� : τ each evaluation), sensor and actuator state, imported state from
neighbors, and space-time metrics information about neighbors.

• The computation then is evaluated on a step-by-step basis, with the
transition rules of the operational semantics acting on the program
expression ep and possibly affecting/reading the store Σ, until the ex-
pression is completely evaluated to a value in A—the result of the
computation round on that device.

• At that point, the memory will be in state τ ,� : •, where τ is the new
memory tree, and στ is the export data that will be shared with the
device’s neighbors.

26

We assume that it is the role of the platform to properly manage all parts of
the store except for the memory tree, as well as restoring the initial expression
at each computation round—this will be formalized in the next section. The
operational semantics presented in this section will use information from the
whole store, but modify only the memory tree and the current expression.

Rules of the operational semantics are provided in Figure 5 (meta-operations),
Figure 6 (pointwise computation), Figure 8 (functions and variables), Fig-
ure 9 (branching), Figure 10 (stateful computation), and Figure 11 (neigh-
borhood computation). These semantics and their interactions are explained
in detail in the accompanying text.

〈Σ′〉e→∗ 〈Σ′′〉e′
〈Σ | Σ′〉e→ 〈Σ | Σ′′〉e′ [META-STORE]

〈Σ〉e→∗ 〈Σ′〉A
〈Σ〉EJeK→ 〈Σ′〉EJAK [CTX-SUB]

τ ′ 6= •
〈� : τ, τ ′〉e→ 〈�, τ ′ : τ〉e [CTX-INIT]

τ ′ 6= •
〈T Jτ ,�, τ ′K : •〉e→ 〈T Jτ ,�, tail1(τ ′)K : τ ′1〉e

[CTX-ADVANCE]

Figure 5: Operational Semantics of Proto language meta-operations.

3.4.1. Meta-Semantics

The meta-semantic rules presented here have two purposes: simplifying
the notation of further rules, and keeping the memory context tree and eval-
uation context in alignment.

We start with rule [META-STORE], which is the counterpart of parallel
composition rules, such as those in π-calculus. It says that when considering
whether a system state moves from s to s′, we can consider any sub-part Σ′

of the overall store Σ | Σ′: if Σ′ is moved to Σ′′ by our semantics, then the
overall store moves to Σ | Σ′′. Intuitively, what this means is that the rest
of our semantics only needs to mention the portions of the store relevant to
the transition at hand.

27

Similarly, the rule [CTX-SUB] uses the evaluation context notation to
allow us to specify only what happens with a sub-expression. It says that
whenever there is a sub-expression e that can be evaluated in the current
evaluation context, then the store changes from Σ to Σ′ as prescribed by
the evaluation of the sub-expression and result A of the evaluation can be
substituted for e, as EJAK. This means that we need only specify how top-
level expressions are evaluated, and the rest will follow from [CTX-SUB].

The [CTX-INIT] and [CTX-ADVANCE] rules work together to ensure
that the evaluation context and the memory context trees remain aligned.
At any time during evaluation, the memory T : τ should have a non-sequence
sub-tree selected as τ , the current sub-tree under consideration. This will be
the next element of state to be updated, once the evaluation reaches its
corresponding sub-expression.

The [CTX-INIT] rule sets this up by taking an initial state 〈� : τ, τ ′〉 and
shifting the hole to the first element τ , producing the memory state �, τ ′ : τ
(in the case where there is only one or zero elements in memory, no setup
is required). After a piece of memory is updated, it will be replaced into
the memory context tree, moving the hole forward and leaving no memory
sub-tree under consideration—a state of the form T Jτ ,�, τ ′K : •. When this
happens, rule [CTX-ADVANCE] shifts the next element of memory, τ ′1 (if it
exists), to be the memory sub-tree under consideration.

In this way, the [CTX-*] meta-rules act as “glue” facilitating the compu-
tation and simplifying the notation of the semantic rules to follow. We will
further illustrate the operation of these rules in the next section, once we
have introduced some rules that actually compute.

math(pointwise,A) = A′
〈Σ〉(pointwise A)→ 〈Σ〉A′ [MATH]

−
〈io(v := L)〉(v)→ 〈io(v := L)〉L [SENSE]

L′′ = (if |L′| = 1 then L′1 else T (L′))
〈{io(v := L)} ⊗ Σ〉(v L′)→ 〈io(v := L′′)⊗ Σ〉L′1

[ACT]

Figure 6: Operational Semantics of Proto language pointwise operations.

28

math(pointwise,A) A′ math(pointwise,A) A′

all,A A|A| tup,A−O T (A−O)

not,B ¬B elt, T (A−O),S AS+1

+,N N1 +N2 + · · ·+N|N| -,N ,N N1 −N2 − · · · − N|N|
*,S,N S1 ∗ S2 ∗ · · · ∗ S|S| ∗ N /,N ,S N/S1/S2/ . . . /S|S|
<,N ,N ′ N < N ′ >,N ,N ′ N > N ′
=,N ,N ′ N = N ′ <=,N ,N ′ N <= N ′
>=,N ,N ′ N >= N ′ min,N Ni s.t. ∀Nj∈NNi <= Nj

max,N Ni s.t. ∀Nj∈NNi >= Nj abs,S |S|
floor,S bSc ceil,S dSe
round,S bS + 0.5c pow,S,S′ SS′

sqrt,S
√
S log,S lnS

mod,S,S′ S mod S′ rnd,S,S′ Random number in [S,S′]
sin,S sinS cos,S cosS
tan,S tanS asin,S sin−1 S
acos,S cos−1 S atan2,S,S′ tan−1(S/S′)
sinh,S sinhS cosh,S coshS
tanh,S tanhS len, T |T |

vdot,V,V ′ V · V ′ mux,B, [A−O], [A−O]′ (if B then [A−O] else [A−O]′)

Figure 7: Values computed by Proto pointwise operators.

3.4.2. Pointwise Computation

All ordinary pointwise computation is handled through the single rule
[MATH]. Since this rule is not enabled until all of the arguments A have
been evaluated, [MATH] does not interact with the store at all. Therefore
the store is indicated by the most generic form Σ and is unaffected by the
transition.

The result expression itself is computed from the arguments according
to the appropriate element of relation math, as defined in Figure 7. Almost
all of the current Proto pointwise operators implement simple mathematical
operations, such as addition and trigonometry. A few non-standard operators
worth noting:

• all takes an arbitrary number of arguments and returns the last.

• mux is a multiplexer operation, which first evaluates the three argu-
ments, then returns the value of its second argument if the first is
true, and the value of its third argument if the first is false.

29

• When comparators like > are applied to vectors, they compare them
lexicographically and pad with zeros to make them the same length.
Thus, for example, the vector (1, 2, 3) is greater than the vector (0, 5).

Now let us consider how the set of rules defined so far apply together to
evaluate a pointwise expression, such as (+ (- 5 1) (* (/ 6 2) 4)). We
begin with an empty memory and the raw expression:

〈� : •〉(+ (- 5 1) (* (/ 6 2) 4))

The [CTX-SUB] rule can apply, matching e to (- 5 1) and applying rule
[MATH] to evaluate recursively inside of the preconditions:

. . .
〈� : •〉(- 5 1)→ 〈� : •〉4 [MATH]

〈� : •〉(+ (- 5 1) (* (/ 6 2) 4))→ 〈� : •〉(+ 4 (* (/ 6 2) 4))
[CTX-SUB]

Now that the first term has been evaluated, the [CTX-SUB] rule can
apply again: the innermost match for it sets e to (/ 6 2), again applying rule
[MATH] to evaluate in the preconditions:

. . .
〈� : •〉(/ 6 2)→ 〈� : •〉3 [MATH]

〈� : •〉(+ 4 (* (/ 6 2) 4))→ 〈� : •〉(+ 4 (* 3 4))
[CTX-SUB]

Similarly, one more stage of such evaluation brings us to 〈� : •〉(+ 4 12),
which moves to 〈� : •〉16 by another evaluation directly invoking the [MATH]
rule. The final result of this evaluation is the Scalar value 16. This is, in
fact, the definitive and only result, although there is generally some variation
in how [CTX-*] rules may be applied to reach this result.

All of our other semantic rules will operate in a similar manner to [MATH]
(except that they will interact with the store in various ways), ensuring a
deterministic progression of the evaluation. This is important because we
need to make sure that the memory tree is aligned from round to round and
from device to device.

For example, sensors and actuators are handled almost identically to
pointwise operators, except that they read and write values from sensor and
actuator state, respectively. Rule [SENSE] reads sensor v by finding its value
assignment io(v := L) from the store, returning this value and leaving the
store intact. Rule [ACT] uses the form {io(v := L)} ⊗ Σ to remove what-
ever prior information on actuator v might exist in the store. It then assigns

30

v to the values it has been passed (bundled into a Tuple if there is more
than one). The value of the first argument to the actuator is passed through
as a return value—a useful feature as it allows debugging actuators to be
“wrapped” around expressions without having to create a let variable. The
set of “universal” sensors and actuators required to be best-effort supported
on every Proto platform are defined below in Table 2.

−
〈T Jv := A,�K : τ〉v→ 〈T Jv := A,�K : τ〉A [VAR-FOUND]

τ ′ 6= v := A 〈T Jτ ,�, τ ′, τ ′′K : •〉v→∗ 〈T Jτ ,�, τ ′, τ ′′K : •〉A
〈T Jτ , τ ′,�, τ ′′K : τ ′′′〉v→ 〈T Jτ , τ ′,�, τ ′′K : τ ′′′〉A [VAR-LOOK-BACK]

〈T : •〉v→∗ 〈T : •〉L
〈T J(�, τ)K : τ ′〉v→ 〈T J(�, τ)K : τ ′〉L [VAR-LOOK-UP]

〈T : •〉v→∗ 〈T : •〉F I = {a 7→ σT J(�, τ)K . τ ′′} ⊗ I′ F ′ = {a 7→ L} ⊗ F
〈I | T J(�, τ)K : τ ′〉v→ 〈I | T J(�, τ)K : τ ′〉F ′ [VAR-LOOK-UP-FIELD]

−
〈T Jτ ,�, τ ′K : τ ′′〉(def v A)→ 〈T Jτ , v := A,�, τ ′K : •〉A [DEF-VAR]

τ ′ = {v := A} (if τ = • then τ ′′ = • else τ = (τ ′′))
〈T J(τ ′,�, tail|v|(τ ′′))K : •〉(all e)→∗ 〈T J(τ ′′′,�)K : •〉A

〈T : τ〉(let ({(v A)}) e)→ 〈T J(τ ′′′),�K : •〉A
[LET]

O = (arg, (all e))
〈T Jτ ,�, τ ′K : τ ′′〉(def v (arg) e)→ 〈T Jτ , v := O,�, τ ′K : •〉O [DEF-FUN]

O = (arg, (all e))
〈Σ〉(fun (arg) e)→ 〈Σ〉O [ANON-FUN]

〈Σ〉e→∗ 〈Σ〉O O = (arg, e′)
〈Σ〉(e A)→ 〈Σ〉e′[A/arg]

[APPLY-FUN]

Figure 8: Operational Semantics of Proto language function and variable operations.

3.4.3. Functions and Variables

Next we consider functions and variables, both defining them and using
them later. The general pattern is the same for both: definitions add a

31

variable to the memory tree, usages search backward and up through the
memory tree to find the nearest matching variable definition.4

Let us begin by considering variable lookup. The rules [VAR-*] imple-
ment recursive and lexically scoped retrieval of variable assignments within
the memory tree, without affecting its contents. Rule [VAR-FOUND] is the
terminal case: given a variable v, the leaf immediately before the hole is
the assignment v := A, so the result is A (recall that τ matches an ordered
set as well as a single element). In any other case, the rules [VAR-LOOK-
BACK], [VAR-LOOK-UP], and [VAR-LOOK-UP-FIELD] recursively walk
the hole through the tree until [VAR-FOUND] can apply. Lexical scop-
ing is implemented by making [VAR-LOOK-BACK] dominate, such that the
search does not descend into sub-trees and only raises the hole to a super-tree
when it cannot move backward. The [VAR-LOOK-UP] and [VAR-LOOK-
UP-FIELD] rules only differ in that [VAR-LOOK-UP-FIELD] performs fil-
tering on Fields, such that a reference ultimately retrieves only those neigh-
bors that align with the location where the variable is referenced (i.e., were
produced by the same expression at the neighbor).

Given this, rule [DEF-VAR] is the simplest case of creating a binding. It
simply takes a variable name v and a value A and inserts a variable assign-
ment v := A into the store (replacing the prior definition, if such existed).
The value A is returned.

Rule [LET] does the same for a batch of assignments, {(v A)}, but with
the additional feature that the bindings are placed into a sub-tree, effectively
limiting their scope to the body of the let expression. Note that in the
preconditions we make expressions all e evolve under a sub-tree where first
element contains all n assignments, the second one is the hole, and the re-
mainder is formed by those subtrees for the body that remained of τ after
skipping n elements.

Function definition via the [DEF-FUN] rule is the same as variable defini-
tion, except that the value O is created by binding together the unevaluated
expressions for the arguments arg and the body of the function e. The body
is ensured to be a single expression by wrapping it with an all. Just as for
[DEF-VAR], the [DEF-FUN] rule adds a variable assignment binding v := O
into the memory tree, and returns the value O. Anonymous function defini-

4In actual implementation, the number of lookups made at run-time can be greatly
reduced by resolving as much as possible at compile-time.

32

tion is the same, except that no binding is produced. As far as comparison
with functional languages is concerned, note that in these semantics defini-
tion of functions always occur in an empty environment, that is, there are
no lexically visible variables the function can access, except for its formal
arguments. Recent extension in [30] allows closures in Proto, and is a target
for future extension of these semantics.

Finally, rule [APPLY-FUN] provides semantics for using functions. It
searches for the proper definition of function e, then returns the retrieved
body e′ after substituting formal parameters arg with their actual values A.
Note that functions as first-class objects pose some significant challenges in
distributed computation (for example, assuring that an equivalent tree was
generated by an equivalent function–see discussion in Section 5), so Proto in
its present form only allows functions to be passed within scopes where it
can be assured that every device is running the same function. Thus, mux
and tuple manipulation exclude functions, as will the [IF] rule defined in the
next section. Likewise, we assume that the compiler also checks to see that
all variables referenced by the function will have values accessible to it in
each of its applications.

For an example of using these rules, let us consider the expression

〈� : •〉(let ((x 1)) (+ x x))

that matches rule [LET], which binds x to 1, and then proceeds to evaluate
the body of the let:

〈(x := 1,�) : •〉(all (+ x x))→∗ . . .
〈� : •〉(let ((x 1)) (+ x x))→ . . .

[LET]

To solve the top part of the rule, [CTX-SUB] matches and begins evalu-
ation of the sub-expression x, which is resolved by [VAR-FOUND].

. . .
〈(x := 1,�) : •〉x→ 〈(x := 1,�) : •〉1 [VAR-FOUND]

〈(x := 1,�) : •〉(all (+ x x))→ 〈(x := 1,�) : •〉(all (+ 1 x))
[CTX-SUB]

Another round of [CTX-SUB] and [VAR-FOUND] proceeds similarly:

. . .
〈(x := 1,�) : •〉x→ 〈(x := 1,�) : •〉1 [VAR-FOUND]

〈(x := 1,�) : •〉(all (+ 1 x))→ 〈(x := 1,�) : •〉(all (+ 1 1))
[CTX-SUB]

33

At that point simple application of rule [MATH] leads to 〈(x := 1,�) : •〉2.
Hence, the application of [LET] rule returns the result and places the hole
back on the level where it previously was:

〈(x := 1,�) : •〉(all (+ x x))→∗ 〈(x := 1,�) : •〉2
〈� : •〉(let ((x 1)) (+ x x))→ 〈(x := 1),� : •〉2 [LET]

τ ′′ = (if τ = (B, τ ′) and B = B′ then τ ′ else •) e′′ = (if B′ then e else e′)
〈T J(B′,�, tail1(τ ′′))K : τ ′′1 〉e′′ →∗ 〈T J(B′, τ ′′′,�)K : •〉L − O

〈T : τ〉(if B′ e e′)→ 〈T J(B′, τ ′′′),�K : •〉L − O
[IF]

Figure 9: Operational Semantics of Proto language branching operation.

3.4.4. Branching

We now begin to consider operations that manipulate space and time.
In the manifold abstraction of Proto, branching is modeled as a restriction
of the space where a computation runs. What this means for our semantics
is that rule [IF] needs to not share memory between two different branches,
either from execution to execution or from device to device.

Thus, rule [IF] produces a memory tree of the kind (B, τ ′), where B is
the truth value of first argument, and τ ′ is the sub-tree generated by the
evaluation of second or third argument. First, [IF] checks whether the sub-
tree in the previous round has the same truth value as the current one. If
this is the case, the existing sub-tree τ ′ is considered for next computation;
otherwise we use •, discarding the old tree and building a new one from
scratch. Then, we evaluate the second or third argument, depending on
the value of B, to get a Local that is not a function, creating replacement
sub-tree τ ′′′. Finally, the hole is raised back to the level where it began.

Let us illustrate [IF] with an example, evaluating the expression (if true

(+ 1 (if false 2 3)) (if true 4 5)) against the memory � : (false, (true)).
Since the test is already a literal value, we can proceed directly to the first
application of [IF], which recurses into an evaluation of the true expression:

〈(true,�) : •〉(+ 1 (if false 2 3))→∗ . . .
〈� : (false, (true))〉(if true (+ 1 (if false 2 3)) (if true 4 5))→ . . .

[IF]

34

Notice that the (true) portion of the state has been discarded because the
true branch is taken, while the prior state is associated with the false

branch.
The top is resolved by application of rules [CTX-SUB] and [IF] as follows

. . .
〈(true,�) : •〉(if false 2 3)→ 〈(true,�) : •〉3 [IF]

〈(true,�) : •〉(+ 1 (if false 2 3))→ 〈(true,�) : •〉(+ 1 3)
[CTX-SUB]

which is then followed by a direct application of [MATH] which leads to
〈(true,�) : •〉4. Hence, the top-level application of [IF] leads to final state
〈(true, (false),�) : •〉4.

〈T J(�)K : •〉e→∗ 〈T J(τ ,�)K〉L
〈T : •〉(rep v e e′)→ 〈T J(false, v := L, (τ)),�K : •〉L [REP-INIT]

τ ′ = (if B = true then τ else •) 〈T J(B, v := L,�)K : τ ′〉e′ →∗ 〈T J(B, v := L, τ ′′,�)K : •〉L′
〈T : (B, v := L, (τ))〉(rep v e e′)→ 〈T J(true, v := L′, (τ ′′)),�K : •〉L′ [REP-UPDATE]

∀vi 〈T J(�)K : •〉ei →∗ 〈T J(τ ′i ,�)K : •〉Li τ = {v := L}
〈T J(false, τ , {(τ ′)},�)K : •〉(all e′′)→∗ 〈T ′J(τ ′′,�)K : •〉L′
〈T : •〉(letfed ({(v e e′)}) e′′)→ 〈T ′J(τ ′′),�K : •〉L′

[LETFED-INIT]

τ = {v := L} |τ ′| = |v| τp = (if B = true then τ else •)
∀vi 〈T J(τp,�, τ ′i)K : •〉e′i →∗ 〈T J(τp, τu

i ,�)K : •〉L′i τv = {v := L′}
〈T J(true, τv , {(τu)},�, τ ′′) : •K〉(all e′′)→∗ 〈T ′J(τn,�)K : •〉L′′
〈T : (B, τ , {(τ ′)}, τ ′′)〉(letfed ({(v e e′)}) e′′)→ 〈T ′J(τn),�K : •〉L′′

[LETFED-UPDATE]

Figure 10: Operational Semantics of Proto language state operations.

3.4.5. Stateful Computation

State in Proto is established with state evolution functions, which assign
a variable to some initial value, then update this value in each following
round of evaluation.

We begin with the [REP-*] rules, which establish a single state variable
and return its value. The rep function is actually a macro of letfed, with
form:

(rep v e e′) ≡ (letfed ((v e e′)) v)

35

We present it with its own rules here, however, to show a simpler case of
[LETFED] before generalizing to the full complexity.

The [REP-*] rule acts like a combination of [IF] and [LET], creating a
sub-tree of the form (B, v := L, (τ)), where v := L is the current state,
B is false for the first round of execution and true from then on, and τ
is the tree computed out of evaluation of the second or third argument.
Rule [REP-INIT] handles the first round, when there is no prior state. In
this case, we evaluate the second argument e and produce the output tree
(false, v := L, (τ)), moving the hole forward as we do so. Rule [REP-
UPDATE] handles subsequent rounds. The third argument e′ is evaluated,
starting from an empty sub-tree if B is false. Note that this evaluation is
made using a memory tree that includes the previous variable assignment
v := L, such that the prior value can be used in the computation. The
output is similar to [REP-INIT], though here we set the new truth value to
true.

We can now view the [LETFED-*] rules as a generalization of the [REP-*]
rules. Rather than binding one state variable, a sequence of state variables
are bound, followed by a sequence of sub-trees containing the state produced
by computing them (this is the reason that [REP-*] put the τ into its own
sub-tree). Note that each state variable computation has access to all of the
prior values of all of the other state variables. Finally, rather than return a
state variable, the [LETFED-*] rules return an arbitrary computation that
has access to the newly values of the state variables.

3.4.6. Neighborhood Computation

Finally, we consider the raison d’etre for Proto: computation over neigh-
borhood values. We begin with the three methods of obtaining Field values:
[NBR], [METRIC], and [LOCAL].

Rule [NBR] is used for gathering a value from neighbors (and sharing the
device’s own in return). Let I be the set of imports for this device (the latest
messages that neighbours sent containing the exports of their memory trees,
including the last round’s export from this device). Out of these, we isolate

those whose tree matches with (σT . τ ′)Jnbr(L′)K, namely, those in which
there is a corresponding nbr construct which resides in the same sub-tree.
We let a be the corresponding neighbours and L′ the values they computed
for this nbr construct: these are used to create the Field value that is
returned as output. A device is considered part of its own neighborhood, so
value a′ 7→ L is also inserted into the Field, letting a′ be the device where

36

I = {a 7→ (σT . τ ′)Jnbr(L′)K} ⊗ I′ a′ = self

〈T : τ ⊗ imp(I)〉(nbr L)→ 〈T Jnbr(L),�K⊗ imp(I)〉{a′ 7→ L | a 7→ L′}
[NBR]

I = {a 7→ σT . τ} ⊗ I′ {L = m(metric,V)}
〈imp(I)⊗ Σ | metric({a 7→ V})〉(metric)→ 〈imp(I)⊗ Σ | metric({a 7→ V})〉{a 7→ L} [METRIC]

I = {a 7→ σT . τ} ⊗ I′

〈imp(I)⊗ Σ〉(nbr L)→ 〈imp(I)⊗ Σ〉{a 7→ L} [LOCAL]

Fj = {ai 7→ Li,j} ⊗ F ′ ∀ai 〈Σ〉(pointwise Li)→∗ 〈Σ〉L′i
〈Σ〉(pointwise F)→ 〈Σ〉{a 7→ L′} [FIELD-MATH]

O = (arg, e) 〈Σ〉e[L,L′/arg]→∗ 〈Σ〉L′′
〈Σ〉(fold-hood* O L {a 7→ L′} ⊗ F)→ 〈Σ〉(fold-hood* O L′′ F)

[FHOOD-R]

−
〈Σ〉(fold-hood* O L •)→ 〈Σ〉L [FHOOD-F]

Figure 11: Operational Semantics of Proto language neighborhood operations.

the evaluation is taking place (denoted here as the symbolic name self, which
is some member of the set of devices a). Additionally, the local value L
passed to nbr is stored in the memory, which will be made part of the export
generated at the end of the computation round.

Rule [METRIC] is similar, though once the set of compatible neighbours a
is identified, we extract estimated metric values from the metric(F(V)) term
and use this to produce the output by means of the corresponding function
in Figure 12.

Rule [LOCAL] is used for mixing together Field values obtained from
[NBR] and [METRIC] with Local values.5 It computes the set of compatible
neighbors, just as for [METRIC], but maps each to the Local value L that
is supplied.

Next, rule [FIELD-MATH] applies pointwise functions over Field values,
by arranging for the [MATH] transition to apply to the set of values from

5Typically, local is inserted automatically by the compiler, rather than directly by a
programmer.

37

m(metric,V) L

nbr-lag,V V1

nbr-delay,V V2

nbr-vec,V tail3(V)

nbr-range,V
√∑

i≥3 V2
i

nbr-bearing,V (if |V| = 4 then tan−1(V4/V3) else ⊥)

Figure 12: Values computed by Proto space-time metric operators.

each neighbor.
Finally, rules [FHOOD-*] handle the fold-hood* construct, which trans-

forms Field values back into Local values. For example, the expression
(fold-hood* min Inf F(N)) returns the minimum value in the field F(N).
The [FHOOD-R] rule deals with the case that the field (third argument) is
not empty: we extract an item a 7→ L′ from it, and substitute the partial
summary value L with the result of applying folding function O to L and L′.
When the field is empty, the [FHOOD-F] simply returns the second argument
L.

4. Platform Semantics

After describing the inner details of computations inside devices, we now
turn to platform details, giving semantics for the overall system behavior:
how messages are exchanged, how devices get initialized each time, and how
the network of devices can change its structure over time.

4.1. Syntax

The syntactical aspects of a network configuration are described as fol-
lows.

N ::= Network
• Empty network

| (N "|" N) Composition
| a ::s Device

| a
V7−→ a′ Link

| a � [τ]a′ Pending message from a to a′

38

Due to the use of operator “—” again, a network N is a multiset of three
kinds of element: (i) a ::s means the network includes device a in state s; (ii)

a
V7−→ a′ means device a is connected with device a′ and their estimated space-

time displacement is V (first two elements are time from and to the device;
remaining elements are relative spatial coordinates); and (iii) a � [τ]a′

means a message from a has been produced to reach a′ with content τ—
namely, a memory tree.

〈Σ〉e→ 〈Σ′〉e′
N | a ::〈Σ〉e � N | a ::〈Σ′〉e′ [DEVICE]

epis the program expression

{a � [τ]a′} ⊗ {a V7−→ a′′} ⊗ a ::〈T : • | Σ〉A ⊗N � {a V7−→ a′′} ⊗ a ::〈� : T J•K | Σ〉ep | {a � [σT J•K]a′′} ⊗N
[RELOAD]

−
N ⊗ (a � [τ]a′)⊗ a′ ::〈imp({a 7→ τ ′} ⊗ I)⊗ Σ〉ep � N ⊗ a′ ::〈imp({a 7→ τ} ⊗ I)⊗ Σ〉ep [RECEIVE]

a′′is the new set of neighbors,V ′is the new distances

{a V7−→ a′} ⊗N ⊗ a ::〈metric({a′ 7→ V} ⊗ F)⊗ Σ〉ep � {a V
′
7−−→ a′′} ⊗N ⊗ a ::〈metric({a′′ 7→ V ′} ⊗ F)⊗ Σ〉ep

[MOVE]

−
{• V7−→ a} ⊗ {a V

′
7−−→ •} ⊗N | a ::〈Σ〉e � N

[DROP]

L′is the new values

N | a ::〈io({v := L})⊗ Σ〉ep � N | a ::〈io({v := L′})⊗ Σ〉ep
[SIGNAL]

Figure 13: Operational Semantics of Proto platform

4.2. Operational Semantics

Similar to devices, the platform operational semantics is given by a transi-
tion system of the kind (N,�), where N is the set of states N of the network,
and �⊆ N× N is the transition relation. This transition system models all
the possible events that can occur in the network and that the platform has
somehow to manage, in order to keep the network in a consistent state.

The main assumptions of our model are as follows:

• Message exchange is asynchronous, with each device sending sometime

39

between computation rounds. Order is preserved for each sender, but
messages may be lost.

• Execution is asynchronous, parallel, and atomic. As soon as a device
computation round is over, the execution of a new round is enabled to
start.

Rules of the operational semantics are provided in Figure 13. Rule [DE-
VICE] is a standard model of asynchronous parallel computation in a device:
at any time, any device may perform a single computation step, according
to the language semantics in the previous section.

Rule [RELOAD] can fire when a device a completes a computation round
(program evaluated to result A). In this case, the Proto platform (i) erases
any undelivered messages τ previously sent by a, (ii) retrieves information
about neighbours a, (iii) restores the device program to original state ep, (iv)
and finally sends one message containing an export of the current memory
tree στ ′ to all neighbours. Note that such messages overwrite any other
message previously sent by a and not yet received by its recipient. As this
rule is fired, the device could start another computation round, though most
current Proto implementations wait a predefined time ∆t.

With rule [RECEIVE], device a′ consumes a message sent from a with
content τ : the effect is that the pending message is consumed and replaces
all the imports corresponding to a currently existing in the store of a′—there
could be 0 or 1. Note that the expression must be ep: [RECEIVE] is not
allowed to occur in the middle of a computation. This will be the same for
most of the rest of the transitions.

Rule [MOVE] handles topological changes (e.g., a device moves or fails).
This is modeled as a change in the outgoing connections of a device a, moving
from devices a′ with space-time displacements V to devices a′′ with distances
V ′ (changes involving more devices are modelled as a sequence of [MOVE]
transitions). As this change occurs, the platform changes the store of a,
properly updating structure metric(F(V)).

Similarly, rule [DROP] handles a device leaving the network (e.g., due to
a failure), removing its representation a :: s. Note that this rule is enabled
only if there are no links to/from this device—some previous transitions of
[MOVE] must execute to clean the neighbourhood first.

Finally, rule [SIGNAL] processes the actuators and changes the values
sensed by device a, replacing the io(v := L) term in the store of a. Ta-

40

ble 2 shows the set of universal sensor and actuator relations; all others are
platform specific.

v Type Sense/Act Behavior
hood-radius S sensor Estimated farthest possible neighbor

density S sensor Estimated devices/volume
infinitesimal S sensor Estimated volume/device

dt S sensor Elapsed time since last evaluation
mid S sensor Unique identifier for device

speed S sensor Estimated magnitude of speed
bearing S sensor Estimated compass bearing (if applicable)

mov V act Attempt to move with velocity V
flex S act Attempt to set local curvature of device network to S

set-dt S act Attempt to change time between rounds to S
probe V(L,S) act Place L in debugging slot S

Table 2: Universal sensors and actuators for Proto.

4.3. Example

To shed light on the most important rules of the platform semantics that
we have defined above, we now show some details of an example execution.
Considering the distance-to example, we let ep = (distance-to (sense 1)).
For a network, we assume a simple linear topology of three devices a0, a1, a2,
where each ai is linked to just ai−1 and ai+1. Distance between each pair
of neighbours is 10, and sensor 1 is active for a0 only. As a result, we shall
define the following stores, to represent the sensors (ΣS

0 ,ΣS
1 , and ΣS

2 for the
three nodes) and memory trees (ΣT

⊥ initially, ΣT
∞ after first firing, and ΣT

n for
a node firing distance value n)

ΣS
0 = io(s1 := true) ΣS

1 = ΣS
2 = io(s1 := false)

ΣT
⊥ = � : • ΣT

∞ = � : (false, x := inf) ΣT
n = � : (true, x := n, (nbr(n))

Each node ai also has metric values Σm
i always aligned with topology,

e.g., Σm
1 = metric(a0 7→ v(a1, a0))⊗metric(a2 7→ v(a1, a2)) where v(ai, aj) is

the vector from node ai to node aj. The initial network state is hence formed
by a term:

N0 = a0 ::〈ΣS
0 ⊗ Σm

0 ⊗ ΣT
⊥〉ep

| a1 ::〈ΣS
1 ⊗ Σm

1 ⊗ ΣT
⊥〉ep

| a2 ::〈ΣS
2 ⊗ Σm

2 ⊗ ΣT
⊥〉ep | NL

where NL is the specification of all topology links NL (definition omitted for
simplicity since it is essentially the same information stored in metric values).

41

As this system bootstraps, devices start computing by rule [DEVICE].
The first computation round for any device simply sets variable d to inf.
When this computation is over, rule [RELOAD] fires which retrieves (and
sends) the export tree to all neighbours and restores initial expression ep.
Assuming the first computation round is executed for all three of a0, a1 and
a2, we reach the new state:

N1 = a0 ::〈ΣS
0 ⊗ Σm

0 ⊗ ΣT
∞〉ep | a0 � [ΣT

∞]a1

| a1 ::〈ΣS
1 ⊗ Σm

1 ⊗ ΣT
∞〉ep | a1 � [ΣT

∞]a0 | a1 � [ΣT
∞]a2

| a2 ::〈ΣS
2 ⊗ Σm

2 ⊗ ΣT
∞〉ep | a2 � [ΣT

∞]a1 | NL

where many pending messages have been created. By a [RECEIVE] transi-
tion all the pending messages for a node are consumed and become imports.
As this is executed for all the tree nodes, we reach state:

N2 = a0 ::〈imp(a1 7→ ΣT
∞)⊗ ΣS

0 ⊗ Σm
0 ⊗ ΣT

∞〉ep
| a1 ::〈imp(a0 7→ ΣT

∞)⊗ imp(a2 7→ ΣT
∞)⊗ ΣS

1 ⊗ Σm
1 ⊗ ΣT

∞〉ep
| a2 ::〈imp(a1 7→ ΣT

∞)⊗ ΣS
2 ⊗ Σm

2 ⊗ ΣT
∞〉ep | NL

Assume now that a new computation round for a0 is over, where it fires
value 0, producing the state:

N3 = a0 ::〈imp(a1 7→ ΣT
∞)⊗ ΣS

0 ⊗ Σm
0 ⊗ ΣT

0 〉ep | a0 � [ΣT
0]a1

| a1 ::〈imp(a0 7→ ΣT
∞)⊗ imp(a2 7→ ΣT

∞)⊗ ΣS
1 ⊗ Σm

1 ⊗ ΣT
∞〉ep

| a2 ::〈imp(a1 7→ ΣT
∞)⊗ ΣS

2 ⊗ Σm
2 ⊗ ΣT

∞〉ep | NL

As node a1 receives the corresponding value, it overwrite its import, so we
move to:

N4 = a0 ::〈imp(a1 7→ ΣT
∞)⊗ ΣS

0 ⊗ Σm
0 ⊗ ΣT

0 〉ep
| a1 ::〈imp(a0 7→ ΣT

0)⊗ imp(a2 7→ ΣT
∞)⊗ ΣS

1 ⊗ Σm
1 ⊗ ΣT

∞〉ep
| a2 ::〈imp(a1 7→ ΣT

∞)⊗ ΣS
2 ⊗ Σm

2 ⊗ ΣT
∞〉ep | NL

Now the computation round of a1 proceeds until completion, and reaching
value 10, obtained by the minimum sum of neighbour distance and corre-
sponding vector length:

N5 = a0 ::〈imp(a1 7→ ΣT
∞)⊗ ΣS

0 ⊗ Σm
0 ⊗ ΣT

0 〉ep
| a1 ::〈imp(a0 7→ ΣT

0)⊗ imp(a2 7→ ΣT
∞)⊗ ΣS

1 ⊗ Σm
1 ⊗ ΣT

10〉ep
| | a1 � [ΣT

10]a0 | | a1 � [ΣT
10]a2

| a2 ::〈imp(a1 7→ ΣT
∞)⊗ ΣS

2 ⊗ Σm
2 ⊗ ΣT

∞〉ep | NL

The computation may then proceed forward to compute value 20 for a2, and
the values will continue being computed thus until the sensor or network
state changes.

42

5. Findings and Implications for Proto

In addition to establishing a reference for implementations of Proto, our
work in establishing a formal semantics has produced a number of advance-
ments in the language itself, ranging from major upgrades to small bug fixes.

5.1. Functions

The most significant advance in the Proto language, as a result of this
work, is the semantics for function calls, which depend on the memory tree
structure. The basic problem, which we have introduced the memory tree
structure to address, is how to ensure that neighbor exports can be properly
matched between neighboring devices, despite the fact that the program may
execute differently on each device. Prior to the work reported in this paper,
the discrete semantics of Proto assumed that all neighbor exports and state
could be identified and uniquely enumerated at compile time. Every instance
of the nbr operator in the program was assigned an index, and the export
was a preallocated block of memory, the same size on every device, that was
read from and written to using these indices. When a piece of code was not
executed due to an if, a special mechanism marked the exports within it as
“dead.” A similar mechanism aligned state within a device from round to
round. This is the model used in the core semantics we reported previously
in [19].

The explicit indexing semantics was accomplished in the Proto compiler
by inlining all function calls, such that indices could be easily calculated and
hardwired in the ProtoKernel virtual machine code that it generated. This
had two major negative consequences: first, programs were restricted to only
those where total inlining was possible, eliminating the possibility of recursive
functions, higher order functions like mapping, and functions as first class
objects. Second, every instance of a function call resulted in another nearly
identical copy of the function code, significantly inflating the binary size of
compiled programs.

The memory tree model, coupled with a function call model for com-
putation on manifolds in Proto’s continuous abstraction [30], makes proper
function calls possible in Proto, remedying most of the these shortcomings.
We are now upgrading ProtoKernel to support memory trees; once this is
complete, recursive functions and higher order functions could possibly be
added to the language, alongh with the ability of passing functions as values.

43

Functions will not yet entirely be first-class objects, however, due to two
other challenges revealed by this formal semantics: closure and determining
when to share data between function instances. To illustrate these problems,
consider the following expression:

(fold-hood*

(let ((x (mid))) (def foo (a b) (min a b x)))

Inf

((elt

(tup (fun () (nbr (+ 1 (mid))))

(fun () (nbr (- 1 (mid)))))

(< (rnd 0 1) 0.5))))

The problem of closure is illustrated by the function foo, which references
a variable x that is assigned outside of the function. The function foo is not
evaluated, however, until outside of the scope in which x was defined, so
the current semantics will be unable to find the assignment for x. Closures
are a well-understood problem of functional languages, with a number of
well-established solutions. Because of Proto’s distributed nature, however,
it is not immediately obvious whether these solutions also apply to Proto or
whether they need to be modified.

The problem of determining when to share data between function in-
stances is illustrated by the functions randomly selected from the tuple. Un-
der the semantics we have presented, these functions would occupy the same
location in the memory and thus use each other’s nbr exports. This is clearly
a problem if the functions are performing unrelated computations, but is ap-
propriate and even necessary if the two functions are the same, but happen to
have been originated on different devices. The problem is how to determine
whether two functions should share state or not, and again it is not clear
whether the solutions developed for other systems can be applied directly in
the case of Proto.

We have previously explored some of these questions in [25]; the memory
tree semantics now provide a solid foundation for further investigation of first-
class functions across space-time. Since these issues are not yet resolved, the
semantics presented in this paper simply prohibit the movement of first-class
function objects into situations where these issues can apply.

5.2. Neighbor/Feedback Delay

Our work on semantics formalization has also uncovered a previously
unnoticed suboptimality of Proto’s design: unnecessary delay in expressions

44

that combine neighborhood and feedback.
Consider the following expression, where a value of true spreads through

neighborhoods from randomly chosen devices:

(rep x (< (rnd 0 1) 0.01) (fold-hood* max 0 (nbr x)))

This is an example of the most frequent design pattern in Proto, where
a global interaction is expressed as a state variable chaining through neigh-
borhoods.

Under the continuous space-time abstraction of Proto, the (nbr x) means
that neighbors get access to the value of x as quickly as it can move through
space. This is not, however, what the discrete semantics actually implement.
When rule [REP-UPDATE] is executed, the variable assignment x := L will
change to x := L′. When the subexpression (fold-hood* max 0 (nbr x))
is evaluated, its lookup of x will find the old variable assignment x := L,
which means that rule [NBR] will place L into the memory tree. Each round
of evaluation after the first will thus produce a memory tree of the form:
(true, x := L′, nbr(L)), where L is the value of x from the previous round of
evaluation. What this means is that there is an extra round of delay before
the value of x is actually exported to the neighbors.

This is not a flaw in our formalization of Proto’s semantics, but a sub-
optimality in the design of Proto. It is somewhat remarkable that this was
not noticed before, but close examination of ProtoKernel revealed two im-
plementation bugs which largely cancelled this effect in most ordinary cases.
Note that this double-delay is not an inconsistent behavior: when the density
of devices and frequency of execution increase without bound, the discrete
behavior does converge to the continuous model. In addition, although the
case we are considering is a common case, there are others where attempting
to accelerate the export may not be correct. However, this extra round of
delay is suboptimal in many common cases, and it is an open question how
best to modify the discrete semantics so that they can operate more quickly
and more closely match the continuous abstraction.

5.3. Minor Changes

Besides these major contributions, our formalization of semantics has
revealed three small flaws, which have now been dealt with:

• It was previously possible to use an if expression in a neighborhood
computation. We found, though, that an if expression must not return

45

Field values, as it is possible to create undefined values by applying
[FIELD-MATH] to combine fields that share no devices. This restric-
tion is embodied in the [IF] rule returning only Local values and we
have added corresponding error checking to the MIT Proto compiler.

• It was previously possible to apply an actuator function to a Field
value. A device can only directly control its own actuators, however,
so we restricted the [ACT] rule to require Local values and have added
corresponding error checking to the MIT Proto compiler.

• It makes little sense for the initialization expressions of feedback oper-
ations (rep, letfed) to contain feedback, branching, or neighborhood
operations, as any such state established will be discarded rather than
used in the next evaluation. Allowing it is harmless, however, and no
sensible program is likely to ever do so, so we do not attempt to exclude
this in the semantics or the compiler.

6. Contributions

We have presented a complete operational semantics for programs writ-
ten in the Proto spatial computing language, as executed on an asynchronous
network of fast message-passing devices. This semantics covers both the in-
terpretation of programs on individual devices, and a model of how devices
interact with one another and their environment. In addition, the process of
developing a formal operational semantics has created significant advance-
ments for the Proto language and its implementation in MIT Proto.

We believe this formalization paves the way to a number of future works,
first of all concerned with improving design, analysis and implementation of
spatial computing applications. First, the presented operational semantics
aims at a reference for implementers of Proto, which will be key to guar-
anteeing coherence across existing and emerging implementations for diverse
execution platforms. Second, as Proto is being used to study self-organization
patterns (e.g., [32]), the operational semantics can aid analysis by acting as an
executable specification or as a basis for stochastic model-checking or reacha-
bility analysis. Likewise, it should be possible to prove behavioral properties
(like confluence and deadlock freedom) formally, helping us to better predict
and control the global behaviour of a system. In particular, we believe this
task could be simplified by relying on a smaller calculus covering a significant

46

fragment of Proto. Finally, as has already been the case, this semantics will
be an aid to the continued development of Proto.

References

[1] J. Beal, J. Bachrach, Infrastructure for engineered emergence in sen-
sor/actuator networks, IEEE Intelligent Systems 21 (2006) 10–19.

[2] J. Beal, S. Dulman, K. Usbeck, M. Viroli, N. Correll, Organizing the ag-
gregate: Languages for spatial computing, in: M. Mernik (Ed.), Formal
and Practical Aspects of Domain-Specific Languages: Recent Develop-
ments, IGI Global, 2013, Ch. 16, pp. 436–501. doi:10.4018/978-1-4666-
2092-6.ch016.

[3] M. D. Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, P. Pillai, Program-
ming modular robots with locally distributed predicates, in: IEEE In-
ternational Conference on Robotics and Automation (ICRA ’08), 2008,
pp. 3156–3162.

[4] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, P. Pillai,
Meld: A declarative approach to programming ensembles, in: IEEE
International Conference on Intelligent Robots and Systems (IROS ’07),
2007, pp. 2794–2800.

[5] M. Mamei, F. Zambonelli, Programming pervasive and mo-
bile computing applications: The tota approach, ACM Transac-
tions on Software Engineering Methodologies 18 (4) (2009) 1–56.
doi:http://doi.acm.org/10.1145/1538942.1538945.

[6] M. Viroli, D. Pianini, J. Beal, Linda in space-time: an adaptive coordi-
nation model for mobile ad-hoc environments 7274 (2012) 212–229.

[7] M. Viroli, M. Casadei, S. Montagna, F. Zambonelli, Spatial coordina-
tion of pervasive services through chemical-inspired tuple spaces, ACM
Transactions on Autonomous and Adaptive Systems 6 (2) (2011) 14:1 –
14:24. doi:10.1145/1968513.1968517.
URL http://doi.acm.org/10.1145/1968513.1968517

[8] M. Viroli, D. Pianini, S. Montagna, G. Stevenson, Pervasive ecosystems:
a coordination model based on semantic chemistry, in: S. Ossowski,

47

P. Lecca, C.-C. Hung, J. Hong (Eds.), 27th Annual ACM Symposium
on Applied Computing (SAC 2012), ACM, Riva del Garda, TN, Italy,
2012, pp. 295–302.

[9] S. Montagna, M. Viroli, J. L. Fernandez-Marquez, G. Di Marzo Seru-
gendo, F. Zambonelli, Injecting self-organisation into pervasive service
ecosystems, Mobile Networks and Applications (2012) 1–15Online first,
available through DOI: 10.1007/s11036-012-0411-1. doi:10.1007/s11036-
012-0411-1.
URL http://www.springerlink.com/content/x3j4776323717w7h/

[10] R. Gummadi, O. Gnawali, R. Govindan, Macro-programming wireless
sensor networks using kairos., in: Distributed Computing in Sensor Sys-
tems (DCOSS), 2005, pp. 126–140.

[11] R. Newton, M. Welsh, Region streams: Functional macroprogramming
for sensor networks, in: First International Workshop on Data Manage-
ment for Sensor Networks (DMSN), 2004, pp. 78–87.

[12] J.-L. Giavitto, C. Godin, O. Michel, P. Prusinkiewicz, Computational
models for integrative and developmental biology, Tech. Rep. 72-2002,
Univerite d’Evry, LaMI (2002).

[13] J. Beal, R. Schantz, A spatial computing approach to distributed algo-
rithms, in: 45th Asilomar Conference on Signals, Systems, and Com-
puters, 2010, pp. 1–5.

[14] J. Bachrach, J. Beal, Programming a sensor network as an amorphous
medium, in: Distributed Computing in Sensor Systems (DCOSS) 2006
Poster, 2006, pp. 1–6, available at http://jakebeal.com/.

[15] J. Bachrach, J. Beal, J. McLurkin, Composable continuous space pro-
grams for robotic swarms, Neural Computing and Applications 19 (6)
(2010) 825–847.

[16] J. Beal, J. Bachrach, Cells are plausible targets for high-level spatial
languages, in: Spatial Computing Workshop, 2008, pp. 284–291.

[17] J. Beal, T. Lu, R. Weiss, Automatic compilation from high-level lan-
guages to genetic regulatory networks, PLoS ONE 6 (8) (2011) E22490.

48

[18] MIT Proto, software available at http://proto.bbn.com/ (Retrieved
January 1st, 2012).

[19] M. Viroli, J. Beal, M. Casadei, Core operational semantics of Proto, in:
M. J. Palakal, C.-C. Hung, W. Chu, W. E. Wong (Eds.), 26th Annual
ACM Symposium on Applied Computing (SAC 2011), Vol. II: Artificial
Intelligence & Agents, Information Systems, and Software Development,
ACM, Tunghai University, TaiChung, Taiwan, 2011, pp. 1325–1332.

[20] J. Bachrach, J. Beal, Building spatial computers, Tech. Rep. MIT-
CSAIL-TR-2007-017, MIT (March 2007).

[21] M. Mernik, J. Heering, A. Sloane, When and how to develop domain-
specific languages, ACM Computing Surveys (CSUR) 37 (4) (2005) 316–
344.

[22] P. R. Henriques, M. J. V. Pereira, M. Mernik, M. Lenic, J. Gray, H. Wu,
Automatic generation of language-based tools using the LISA system,
Software, IEE Proceedings - 152 (2) (2005) 54–69. doi:10.1049/ip-
sen:20041317.
URL http://dx.doi.org/10.1049/ip-sen:20041317

[23] J. Beal, Amorphous medium language, in: Large-Scale Multi-
Agent Systems Workshop (LSMAS), 2005, pp. 1–7, available at
http://jakebeal.com/.

[24] J. Beal, Programming an amorphous computational medium, in: J.-
P. Banatre, P. Fradet, J.-L. Giavitto, O. Michel (Eds.), Uncon-
ventional Programming Paradigms, Vol. 3566 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2005, pp. 121–136.
doi:10.1007/11527800 10.
URL http://dx.doi.org/10.1007/11527800 10

[25] J. Beal, Dynamically defined processes for spatial computers, in: Spatial
Computing Workshop, 2010, pp. 206–211.

[26] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, part I,
Information and Computation 100 (1) (1992) 1–40.

[27] A. Ricci, M. Viroli, G. Piancastelli, simpA: An agent-oriented
approach for programming concurrent applications on top of

49

Java, Science of Computer Programming 76 (1) (2011) 37–62.
doi:10.1016/j.scico.2010.06.012.

[28] D. Turner, The polymorphic pi-calculus: Theory and implementation,
Ph.D. thesis, University of Edinburgh (1995).

[29] A. Igarashi, B. C. Pierce, P. Wadler, Featherweight Java: A minimal
core calculus for Java and GJ, ACM Transactions on Programming Lan-
guages and Systems 23 (2001) 396–450.

[30] J. Beal, K. Usbeck, B. Benyo, On the evaluation of space-time functions,
The Computer Journal. doi:10.1093/comjnl/bxs099.

[31] A. K. Wright, M. Felleisen, A syntactic approach to type soundness,
Information and Computation 115 (1) (1994) 38–94.

[32] J. Beal, J. Bachrach, D. Vickery, M. Tobenkin, Fast self-healing gra-
dients, in: R. L. Wainwright, H. Haddad (Eds.), Proceedings of the
2008 ACM Symposium on Applied Computing (SAC), Fortaleza, Ceara,
Brazil, March 16-20, 2008, ACM, 2008, pp. 1969–1975.

50

