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In an environment increasingly saturated with computing devices, it is desirable
for some services to be distributed, executing via local interactions between
devices. Creating fast, flexible, and dynamic distributed services requires a
general model of function calls distributed over space-time. Prior models,
however, have either depended strongly on large-scale Internet infrastructure or
have restrictions in the scope or resolution of space-time for inputs, outputs, or
evaluation of the function. We address this by providing a formal general model
of function calls over space-time. We then fully realize a practical model of space-
time function calls, based in the Proto language, and present both theoretical
and empirical results. Finally, we show how our results for Proto generalize into

implications for any model of distributed computing.
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1. INTRODUCTION

Every day, the world around us becomes more saturated
with computing devices—particularly as mobile devices
like cell phones and tablets are becoming cheaper, more
capable, and more widespread. With this increased
saturation comes the ability to take advantage of
the massive amount of computing power that these
devices can provide. However, the programming
models currently available take little advantage of their
potential for distributed computation. Instead, most
computation between physically proximate devices
takes place inside of data centers hundreds or thousands
of kilometers away. This process distribution model
becomes insufficient when infrastructure is unavailable
or inadequate—such as during natural disasters,
terrorist attacks, large festivals, and sporting events.

Consider, for example, a distributed disaster response
system running on people’s mobile phones in the
aftermath of an earthquake. Traditional centralized
infrastructure (e.g., cellular and satellite networks)
tends to fail in these situations as a result of hardware
destruction or network overload. However, people
still might want to communicate information about
fires and survivors to rescue workers, navigate while
avoiding blocked or dangerous areas, rendezvous with
friends and loved ones, or coordinate volunteer efforts.
What all of these services have in common is that
a distributed implementation requires a strong many-
to-many model of distributed computation. One can
imagine a “safe navigation” program, for example,

being invoked by many people. This program requires
both local and non-local information to be considered,
and in a disaster scenario, would pragmatically have to
have its computation and data distributed across many
devices.

This is only one of many examples requiring
computational processes distributed over space-time.
As the density of embedded devices rises, it is likely
that efficiency, effectiveness, and privacy may all be
improved by distributing and localizing computation.
For example, why should drivers looking for real-time
traffic data rely on connectivity to a server thousands of
miles away, especially when it is mostly relevant to other
drivers nearby and could be computed and stored on
their personal devices? Other similar spatial computing
domains include large-scale sensor networks, robotic
swarms, and agent-based simulations [1]. Prior work
in spatial computing has yielded a number of models of
computation distributed over space-time, such as those
of Proto [2], MGS [3], TOTA [4], and Meld [5]. The
sort of fast, flexible, and dynamically invoked services
required by scenarios like disaster response, however,
demand a much more general model of distributed
function calls than has been provided by any prior work.

In this paper, we address this problem by providing a
formal general model of function calls over space-time.
We then fully realize a practical model of space-time
function calls, based in the Proto language, and present
both theoretical and empirical results.

The key contributions of this work are:
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X Space-time region for a computation
p A point in space-time

(t, x) Time (t) and space (x) coordinates of a point
V Set of all possible data values
f A field mapping subspace Xf to values in V
f∗ The field associated with element ∗
o An instance of a computational operator
fin The nth input field to an operator instance
fon The nth output field to an operator instance

M All manifolds in a Proto program
m∗ The manifold associated with element ∗
O All operator instances in a Proto program
F All fields in a Proto program
sm Selector field for a sub-manifold m
rd Return value for a root manifold
d Definition of a function

Ed,o(∗) Value of ∗ in function d evaluated for call o
γδ(τ) Trajectory of device δ against local time τ

TABLE 1. Reference table for symbols used in this paper.
The top half contains general notation, the bottom half
Proto-specific notation.

• A formal definition of function calls distributed
over arbitrary regions of space-time and develop-
ment of two models (substitution and in-place) for
evaluating such functions;

• Criteria for well-defined space-time operators,
along with application to Proto and analysis of
their implications; and

• A description of a reference implementation for
space-time function calls.

• Generalization of Proto results to implications for
any distributed computing model.

The remainder of this paper is organized as follows:
Section 2 defines our notion of space-time function calls,
lists their criteria for well-definedness, and discusses
related work. Next, our formal notation for space-
time operators is contained in Section 3, and the
formal conditions for well-definedness are discussed
in Section 4. Section 5 explains two models of
distributed function calls, and their implementation
progress is documented in Section 6 along with the
new language features this work has allowed and its
effect on runtime performance. Finally, we discuss the
general implications of our results for all distributed
computing models in Section 7 and our contributions
are summarized in Section 8. See Appendix A for
proofs of well-definedness for the models of distributed
function calls.

2. WELL-DEFINED SPACE-TIME FUNC-
TION CALLS

In order to investigate the problem of function calls
distributed over space-time, we need to have a precise
definition of what we mean by a space-time function
call. We will also need criteria for well-definedness that
we can use to determine whether a proposed approach

to space-time function calls is valid.

2.1. Well-Definedness of Operators

We begin with the definition of a generic space-time
operator, which we will then refine to provide a
definition of a space-time function call. Recall that
any computation can be viewed in terms of operators
that manipulate data. On a spatial computer, this data
is not kept at one location, but may be distributed
widely over space and time. We will thus define space-
time data as fields that specify what data values are
where at what times, and we will define space-time
computation in terms of operators that take fields as
input and produce fields as output.

We formalize this generally, with the aim that it
should be applicable to all models of computation over
space-time, from conventional networking to discrete
models such as cellular automata to continuous models
such as those proposed in [6], [7], or [8]. For ease
of reference, Table 1 collects all notation used in this
paper.

Let X be the collection of all points p in space-
time where a computation can occur; this might
be continuous (e.g., a manifold) or discrete (e.g., a
collection of events on a network). We can assign
coordinates (t, x) to each point in space-time using any
valid metric, where t is the time coordinate and x is the
space coordinate.

A field associates data with points in space-time: we
shall define a field f as a mapping

f : Xf → V

that maps each point in its domain—some portion of
space-time Xf ⊆ X—to a data value within the range
V of possible values. For example, a field temperature

might be defined over all locations in space-time and
map each point to the temperature observed at that
place at that time.

Building from this definition, an operator is a higher-
order function that maps from fields to fields, and an
operator instance o is an application of an operator to
relate a particular collection of fields:

o : fi1 × fi2 × ...→ fo1 × fo2 × ...

where fin is the nth input field and fon is the nth
output field. There may be any number of input or
output fields, including zero,1 and any given field may
potentially be used multiple times, both within and
across operator instances. For example, a sqrt operator
might be defined to take one field of numbers as input
and return another field of numbers as output, where
the number at each point of space-time in the output
field is equal to the square root of the number at each
point in the input field.

1Operators with no outputs are generally not very useful,
though; actuators are often better represented as functions with
some special semantics attributed to their outputs.
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Given any set of primitive operators, arbitrarily com-
plex computations can be constructed by composing
operators mathematically. This is done by setting the
output fields of some operator instances to be the input
fields of others.

Not all such compositions are reasonable, of course.
Each operator has well-definedness criteria that can be
applied to test whether its set of input and output
fields are legal.2 In this paper, we will focus on the
well-definedness criteria for domains (ranges are readily
handled by conventional type theory). For example, the
sqrt operator requires that its input and output fields
have the same domain: every point of space-time with a
number in the output field requires one in the input field
as well, and vice versa. It is invalid to take a square root
of a number that does not exist, or to take the square
root of a number and produce no result—not even an
error.

Importantly for our purposes, this notion of well-
definedness is a compositional property: thus, in order
to tell if a computation as a whole is well-defined, we
need only check whether each of its operator instances
is well-defined.

2.2. Space-Time Functions

A function, then, is a special type of operator, which
takes its input fields and applies a composition of
operator instances to them in order to evaluate the
function and produce its outputs. The challenge is that,
unlike with other operators, the fields cannot be fully
defined when the function is defined. This is because
the domain where the function is evaluated is set by the
context in which the function is called. Likewise, the
function call determines the fields that will give values
to the function’s parameters and the fields that will take
their values from the function’s outputs. Even more
challenging, when function calls are driven by data (e.g.,
requests from users, observations of the environment),
even the existence of a function call can often only be
determined at run-time. How, then, can we ensure that
a function call over space-time will be well-defined?

The previous answer has been to enforce well-
definedness by limiting the degree to which a function
call can be distributed over space-time. For example,
client-server systems often collapse distribution at the
server where all function calls arrive: the inputs and
outputs at the clients may be at arbitrary points in
space-time, but the evaluation of the function takes
place on the server at a single location in space.
Distributed function call APIs typically use an inverse
model: the input and output are at single points in
space-time, though the evaluation may be arbitrarily
distributed. Transactional systems often use a third
model: inputs, outputs, and evaluation can all be

2We could annotate this formally if we wished to do so, e.g.,
Wo : Fk → {true, false}, but this does not add useful content
for our purposes.

distributed in space, but time resolution is severely
limited by strict communication requirements on the
progress of evaluation. There are other models as well,
but they all share the following property: each model
restricts the space-time extent of the inputs, outputs,
or evaluation of function calls, and each model is well-
suited for some types of computation and poorly-suited
for others.

Our task in this paper is to describe an effective
general model of space-time function calls that has no
such restrictions, yet can always be proven to be well-
defined. This will allow a richer and more flexible
approach to distributed programming, where the extent
of each function call is limited only by the nature of the
computation that it performs.

2.3. Relation to Existing Models of Distributed
Computing

Models of distributed computation have existed for
many years. We organize our presentation of the
existing models in one of three categories: (i) many-to-
one, (ii) one-to-many, and (iii) many-to-many, where
their cardinality refers to the origin and execution
points of the distributed function call.

The many-to-one model is essentially the standard
client/server model, where client machines have their
computations resolved by a single server. This evades
the problems of space-time function calls by collapsing
to non-distributed computation at the server.

Most distributed computation frameworks, on the
other hand, employ one-to-many cardinality where
a single machine divides a highly-parallel problem
among many devices, analyzing or combining their
results once they complete. Examples include Google
MapReduce [9], Hadoop [10], Condor [11], BOINC [12],
and the Oracle Grid Engine [13], among a vast
number of others. These typically evade the problems
of space-time function calls by collapsing to non-
distributed or tightly synchronized computation in the
work dispatching device or devices.

The third category, of many-to-many distributed
computation, is rapidly growing as distributed systems
become more complex. This many-to-many model is
studied under a variety of other names and forms, e.g.,
message-passing, load-balancing, peer-to-peer (P2P),
and distributed consensus.

The most basic many-to-many message-passing
models like Message Passing Interface [14], and
Erlang [15], allow distributed function calls via
arbitrary message exchange. While this approach is
flexible enough to be used to implement any notion
of distributed function calls, it is very low level and
provides no coherent model of a many-to-many function
call, thus effectively ignoring the space-time function
call problem.

Load-balancing is often used as a tool for distributing
computation among a group of devices that provide

The Computer Journal, Vol. ??, No. ??, ????



4 J. Beal, K. Usbeck, B. Benyo

a similar service. For example, large-scale websites
employ load-balancing to maintain responsiveness and
reliability while servicing requests from a multitude
of clients. In reality, load-balancing is improving
scalability by shifting the distribution cardinality from
a traditional website’s many-to-one to a more-scalable
many-to-many. According to [16], load-balancing can
be accomplished in a number of manners including
client-side proxies, Cluster DNS, packet rewriting,
request redirection, and more. However, all these
methods of load-balancing lack the dynamism required
to operate outside of a conventional, mostly-static,
Internet environment. Put another way: they only
operate on space-time regions with highly constrained
structure.

Another category of many-to-many distributed
computation research is termed peer-to-peer (P2P).
P2P is an alternative to client/server architectures
where every device is capable of being both a
resource producer and a resource consumer, and
where resources can include data, bandwidth, or
computational power. Unfortunately, while the P2P
architecture enables generic resource distribution, many
current or recent P2P applications (e.g., file sharing
tools such as BitTorrent [17], Tribler [18], and
Napster [19]; message-based systems such as Skype [20],
and Data Distribution Service [21]; distributed hash-
table implementations such as Chord [22]; and many
more) are ad-hoc data-sharing or messaging tools;
such tools lack the ability to distribute computation
among peers—an important criteria for our distributed
processing model.

An important exception is gossip and population
protocols [23] and approximate consensus (e.g., [24]),
which provide a model of peer-to-peer distributed func-
tion evaluation for certain special classes of functions
and network assumptions. The class of functions with
known feasible methods of implementation, however, is
small.

Exact consensus has also long been studied as a
means of enabling many-to-many distributed computa-
tion, with a rich history of algorithms and strong impos-
sibility bounds [25]. Of particular interest is the recent
thrust of research in the area of “virtual nodes” where
a collection of nearby devices use consensus to form a
larger virtual device on which arbitrary computation
can be computed independent of any particular physi-
cal devices (e.g., [26]). As noted above, however, these
systems require guarantees on the integrity of computa-
tional transactions, which typically leads to slow execu-
tion, high communication costs, and problems ensuring
that an algorithm can progress—in other words, limits
on the time resolution of computation and/or the per-
missible structure of space-time. Recent work coupling
these concepts with self-stabilization [27] offers some
possible paths forward, however.

Spatial computing systems, however, have produced
a number of distributed computing models (reviewed

below in Section 3.1), which provide partial solutions
to the problem of space-time function calls. Typically,
these have been limited either in scope (e.g., OSL [28],
which produces only origami constructions) or in the
degree of guarantees (e.g., TOTA [4], which offers a viral
process model, but little in the way of encapsulation).
Proto [2], however, offers both an aggregate model
of space-time computation and an informal model
of function calls, which will form the basis for our
approach in this paper.

3. APPROACH

Our approach is to consider an extreme case for
distributed function calls, in which the region of space-
time X is continuous. The input and output fields of a
function call will be subspaces of X that may contain
an infinite number of points, as will the fields used in
evaluating the function. If we can produce a generalized
model of function calls that can scale up to infinite
numbers of points, then we can also scale it down to
any smaller system.

In particular, we have chosen to work with the Proto
spatial computing language [2]. Proto is a purely
functional language where programs are specified using
a model of computation over space-time manifolds.
These programs are then compiled for distributed
approximation on networks of discrete devices. Proto is
well-suited for our investigation because its continuous
model and functional composition match the problem
we wish to address, and its approximation model means
that our results should be applicable to discrete systems
as well.

Proto is particularly general—approaching space-
time universality [6]. We thus expect that any of the
distributed computing models discussed above should
be able to be implemented in Proto (though some
would be quite inefficient). For example, [29] shows
one way that a distributed publish subscribe system
(a many-to-many model) can be implemented using
Proto. Our results from working with Proto will
thus have implications for any distributed computing
model, which we discuss below. Furthermore, working
with a continuous model of space-time simplifies our
definitions and proofs, while simultaneously avoiding
tying our results to any particular network model.

We will first formally establish the well-definedness
of Proto programs: although continuous space [30],
time [31], and discrete approximation [32] semantics
have previously been specified for Proto, the well-
definedness of arbitrary compositions of Proto operators
has not yet been proven. We will then develop a model
of space-time function calls for Proto and prove that all
such function calls are guaranteed to be well-defined.
This model supports recursive functions, higher-order
functions, and first-class functions that can be resolved
at compile time (fully first-class functions remain a
challenge for future work).
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Proto’s continuous-to-discrete mapping then means
that mechanisms that we produce for Proto should
be able to serve as a basis for generalized distributed
function calls in other more conventional languages.

3.1. Background: Proto

Proto [2, 33] is one of a number of programming
models that have recently been developed for spatial
computers. In Proto, programs are described in terms
of dataflow field operators and information flow over
regions of continuous space-time. Closely related to
Proto are MGS [34], which performs computation and
topological surgery on the cells of a k-dimensional
CW-complex, and Regiment [35], which operates on
data streams collected from space-time regions. A
number of “pattern languages”, such as Growing Point
Language [36] and Origami Shape Language [28], also
use continuous-space abstractions, but have limited
expressiveness. There are also a number of discrete-
model spatial languages, such as TOTA [4], which uses
a viral tuple-passing model, or LDP [37] and MELD [5],
which implement a distributed logic programming
model. These discrete languages are typically more
tightly tied to particular assumptions about scale and
communication than languages that use a continuous
abstraction.

In Proto, programs are described in terms of
operators over regions of continuous space, using
the amorphous medium abstraction. An amorphous
medium [2] is a manifold with a computational device
at every point, where each device can access the recent
past state of a neighborhood of other nearby devices.
Computations are structured as a dataflow graph of
operators on fields. Careful selection of operators allows
these programs to be automatically transformed for
discrete approximation on a network of communicating
devices—typically as a Proto Virtual Machine (VM)
binary.

We consider four families of Proto operators:
pointwise, restriction, feedback, and neighborhood.
Pointwise operators (e.g., +, sqrt, 3) involve neither
space nor time. Restriction operators (e.g., if)
limit program execution to a subspace. Feedback
operators (e.g., rep) remember state and specify how it
changes over time. Neighborhood operators (e.g., nbr,
int-hood) encapsulate all interaction between devices,
computing over space-time measures and neighboring
device state.

We will discuss each of the four families of operators,
pointwise, restriction, feedback, and neighborhood, in
detail in the next section as we establish the well-
definedness of Proto. For a full explanation see [2] or
the MIT Proto documentation and tutorial [33].

4. WELL-DEFINEDNESS OF PROTO

In this section, we formalize the well-definedness
conditions for each family of space-time operators

in Proto and establish that arbitrary compositions
of Proto operators are well-defined, so long as they
specify finitely-approximable computations. These
well-definedness conditions may be summarized as:

• Pointwise operators (except mux, which is used
to re-combine sub-spaces into a single, coherent
space) must have equal domains for all fields.

• a mux operation’s first input and output domain
must be equal, and its second and third input
domains must cover all true and false values in the
first input, respectively.

• a restrict operation, which changes the domain
of a field, must have its input domain must contain
its output domain.

• a delay operation, used for creating state memory
for feedback operations, must have its input
domain contain past locations or initialization
values for all points in its output domain.

• Operators over neighborhoods must have equal
domains for all fields and also equal domains for
the field-values at each point in all domains.

In the process of formalizing well-definedness, we also
discovered two flaws in the prior operator definitions.
These flaws previously led to a lack of well-definedness
in certain cases, causing subtle problems in the
execution of Proto programs. In the appropriate
subsections, we will explain these flaws and how they
have been corrected.

4.1. Formal Notation

Proto dataflow programs can be formally represented
in an equivalent manner using either mathematical
notation or dataflow diagrams. In this paper, we will
use both: diagrams for intuition and mathematical
notation for analysis and proofs.

In either case, a Proto program may be represented as
a collection of manifolds (M), fields (F ), and operator
instances (O), and return value associations between
fields and manifolds (R). The manifolds, fields, and
operator instances are straightforward specializations of
the definitions from Section 2.

The manifolds3 are the space-time region and sub-
regions over which the program executes (specializa-
tions of X and the set of Xf from Section 2). One
of these manifolds must always be the equivalent of X,
covering the whole space: we term this the root mani-
fold.

The fields are the variables and values of the program,
each field (f ∈ F ) assigning a value to every point in
some region of space-time (f : m → V , where m ∈ M
and V is any data value). The operator instances are
the computations being done to produce the fields, with
each operator instance (o ∈ O) taking zero or more
input fields and producing precisely one output field

3Technically, we will require all of these to be manifolds with
boundary, for reasons explained in Section 4.5.
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FIGURE 1. Proto programs contain manifolds (spaces),
fields that assign values to every point in a manifold, and
operator instances that compute fields. We also show
examples of evaluation against a manifold at an instant in
time, to better illustrate evaluation and domains, as in the
example shown of an irregular manifold (e) and a field over
that manifold (f) where some points are mapped to 3 and
others are mapped to 1.

(o : fi0 × fi1 × ...× fik → fo, where fi∗ , fo ∈ F ). Fields
can also be selectors for subspaces: given manifold m′

and a Boolean-valued field sm ∈ F with m′ as its
domain, we can define sub-manifold m as the closure of
the collection of points {p ∈ m′|sm(p) = true}, the part
of m′ where sm is true (the reason we use the closure
will be explained in Section 4.5).

Finally, return values are pairs r = (m, f),
associating a root manifold m (the entire space
associated with a function or program), with some field
that has m as its domain. Right now, there is precisely
one root manifold, but when we introduce function
definitions there will be many.

Figure 1 illustrates symbols for manifolds, fields, and
operator instances. Operator instances are boxes, with
inputs entering in order, left to right, across the top
edge, and output exiting the bottom. A field is an
arrow going from the operator instance that produces
it to the instances that use it as input. Manifolds
are large dashed-line boxes, indicating the domain of
all fields produced within them. Root manifolds are
labeled with a name, while sub-manifolds are nested
inside their parent manifold and take a selector field
as input. Return values are indicated by a star next
to the field’s arrow. For pedagogical purposes, we
will also show snapshot examples of evaluation against
a manifold: each example will also show an example
irregular space and fields that might be produced by
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FIGURE 2. Diagram of a Proto expression computing
the quadratic formula with a = 1, b = 5, and c = 6, and
example of evaluation on an irregular manifold.

evaluation over that manifold at an instant in time.
Figure 2 shows a simple example diagram combining

these elements, an expression that computes the
quadratic formula with a = 1, b = 5, and c = 6:

(let ((a 1) (b 5) (c 6)) ;; define a, b, and c
(/ (+ (- b)

(sqrt (- (* b b)

(* 4 a c))))

(* 2 a)))

4.2. Pointwise Operators

Pointwise operators are the “normal” operators that
each device can execute independently, without
considering space or time. Examples include constants
(e.g., 3, true), numerical operations (e.g., +, log),
sensors and actuators, and function parameters.
Because these operators act over all space-time
identically, the condition for a pointwise operator
instance o to produce a well-defined field is that every
input field fij and the output field fo, must all have
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the same manifold m as their domain (except the mux

operator, discussed in Section 4.3).
If a Proto program is composed entirely of well-

defined pointwise operators, then it is trivial to prove
that the entire program is well-defined.

4.3. Restriction Operators

Restriction expressions create a sub-manifold and
evaluate a target expression in that sub-manifold. For
example:

(restrict (sqrt 3) ;; compute square root of 3
(< (speed) 1)) ;; on devices moving slower than 1 m/s

selects a sub-manifold of slow-moving devices and
computes the square root of 3 across that sub-manifold.
Such an expression, however, cannot directly use fields
from or be used as an input by operator instances
in different sub-manifolds, as the well-definedness
condition would be violated (a similar example is shown
in Figure 3(a)).

The output side of the problem is resolved by means
of a pointwise multiplexing operator, mux, with a
relaxed well-definedness condition. An instance o of
the mux operator takes three inputs. The range of fi0
is a Boolean: for each point p in its domain mi0 where
fi0(p) is true, fo(p) = fi1(p); otherwise, fo(p) = fi2(p).
We can thus relax the well-definedness condition for mux
to be:

mi0 = mo

mi1 ⊇ {p ∈ mi0 |fi0(p) = true}
mi2 ⊇ {p ∈ mi0 |fi0(p) = false}

In other words: any points whose values will not be
used need not be part of the domain of the second and
third inputs.

The problem of managing where restriction expres-
sions can be safely used is resolved by disallowing the
programmer from using restriction directly. Instead, re-
striction is made available in an if syntactic construct
of form:

(if test true-expression false-expression)

This form creates two complementary sub-manifolds,
then combines the results of their expressions with
a mux using the same selector field, following the
template in Figure 3(b). In other words, we prevent
the programmer from using restrict directly, in favor
of using an if construct, as a way of ensuring well-
definedness of the domain restriction.

Expressions using if and mux thus provide two forms
of branching that look similar, but differ greatly in their
semantics. The if and mux operators share the same
syntax in that they both have a selection (a.k.a., test)
expression, and two branch expressions — a true branch
and a false branch. Further, for any given point in the

manifold, both operators evaluate and return the result
from the branch expression that corresponds to the
value of the selection expression at that point (i.e., if the
selection evaluates to true, then the true-expression is
executed and returned). However, where the behaviors
of the if and mux operators differ is in their treatment
of the unselected branch expression. The if operator
does not execute the unselected branch expression (i.e.,
it uses restrict to limit the domain of the operators
and fields in the branch), whereas the unselected branch
expression is evaluated with the mux operator (which
is not a syntactic operator and thus cannot affect the
evaluation conditions of its branch expressions).

The if/mux distinction has important implications
for how branching interacts with the state established
by feedback operators and the information sharing
of neighborhood operators. As we will see below,
with if, the domain restriction resets state and
prevents information from flowing; with mux, a state
can be retained and information can be shared. A
typical distributed computation will need to use both.
For example, publish-subscribe needs to differentiate
behavior but share information between publishers and
subscribers (using mux), but for efficiency must restrict
the propagation of information to only those who need
it (using if).

When an if expression refers to an external variable,
as in:

(let ((x 7)) ;; define x as 7
(if (< (speed) 1) ;; if device is moving slower than 1 m/s

3 ;; return 3.
(sqrt x))) ;; Otherwise, return sqrt of x

then a restrict operator instance is inserted into the
reference, limiting its domain (as shown in Figure 3(c))
to be the sub-manifold where the reference occurs. This
operator takes one input fi0 , and produces an output fo
whose value is equal to fi0 , but whose domain may be
smaller. The well-definedness condition for restrict is
simply that mo ⊆ mi0 , which is guaranteed by lexical
scoping and the if construct.

Lemma 1. Any Proto program composed of point-
wise and restriction expressions is well-defined.

Proof. See Appendix A.

4.4. Space-Time Trajectories of Devices

The other two families of Proto operators, feedback and
neighborhood, compute with values from more than one
point in space-time. The conditions for these operator
instances being well-defined are thus about ensuring
that domains of the input include all of the points
needed.

Defining these operators also requires us to introduce
a notion of the trajectory of a device, since a moving
device carries state with it, and may communicate
with different sets of other devices at different times.
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(c) Safe Branching Example

FIGURE 3. Restriction of a computation to a sub-manifold can can lead to problems with domain mismatch (a, mismatch
shown as red), and example of evaluation on an irregular manifold. Safe restriction is provided by a special form branch
construct that creates complementary sub-manifolds whose fields can be multiplexed together to produce a well-defined
output over the original manifold (b). External references are passed through a domain-changing restrict operator instance,
as in the example in (c).

The trajectory of any given device δ over time will be
expressed as γδ(τ), a function that maps from a local
time τ to coordinates (t, x) in time and space (i.e.,
the “world-line” of the device, to borrow terminology
from relativity; an exploration of the implications of
relativity for Proto is beyond the scope of this paper,
however). We will assume that a valid collection of such
trajectories exists, and that when bundled together they
form the entire space-time X. Any given trajectory
must be closed, but need not cover the entirety of time
(i.e., devices can be created or destroyed). For purposes
of this paper, however, we will assume that devices
never join, split, or intersect, such that any given point
p belongs to precisely one device δ.

4.5. Feedback Operators

State is created in Proto through state evolution
functions, which specify an initial value and its
evolution over time. This is implemented using a
feedback loop with a delay operator, which time-shifts
values across an arbitrarily small positive time ∆t

(which may further vary by location and time). For
example, Figure 4 shows a simple timer:

(rep v 0 ;; initialize v to 0, then each time step...
(+ v (dt))) ;; ... update v by adding the time delta

where v is the state variable, 0 is its initial value,
and the update increases the value of v by the elapsed
time, ∆t (measured by the dt operator). This allows
feedback loops to specify general continuous-time state
evolution functions, including discrete valued functions
where there is not always a derivative (see [31]).

mux

dchange

dt
0

+

delay

<expr>

� �

�

�
���

���

���
���

�
���

FIGURE 4. Well-definedness of feedback delay operators
is assured with a syntactic form that guarantees that an
initialization expression supplies values whenever there are
no past values to be delayed. We also show an example of
evaluation on an irregular manifold, where the left portion
of the space is just being initialized.

Because manifolds may have different spatial scope at
different points in time, the criteria for a delay operator
o to be well-defined is similar to that of restrict:
all of the points in the output field fo must have
corresponding time-shifted points in the input field fi0 .
Since the value of ∆t is not resolved at compile-time,
to be well-defined, it must be provable that, for every
device δ:

∀δ, τ s.t. γδ(τ) ∈ mo,
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γδ(τ) ∈ mv or ∃∆t > 0 s.t. γδ(τ−∆t) ∈ mi0

where mo and mi0 are the domains of fo and fi0 , mv

is the domain of the initial value field, and γδ is the
trajectory of a particular device δ over time.

The intuition of this definition is simple: the output
of a delay must get its values either from values earlier in
time or, if there is no earlier in time, from initialization
values. We thus introduce a pointwise operator dchange
that selects the minimum-time surfaces of a manifold,
and use a restriction construct, similar to if, in
which the initialization expression is evaluated on the
minimum-time surfaces and the update expression is
evaluated elsewhere.

We are not quite done, however, since we need to
ensure that the minimum-time surface of a manifold
actually exists. Consider, for example, this Proto
expression:

;; Make a sine wave
(let ((wave (sin (rep x 0 (+ x (dt))))))

(if (>= wave 0) ;; When the wave is zero or more...
(rep y 0 (+ y (dt))) ;; ... run a timer.
(rep z 0 (- z (dt))))) ;; ... same when below zero.

In this program, each device times how long a sine
wave has been above or below zero. The two branches
are not quite identical, however: the regions where (>=

wave 0) is true are a collection of closed intervals, since
they include zero, while the regions where it is false
(below zero) are a collection of open intervals, since
they do not include zero. If we switched from >= to >,
the two sets of intervals would swap which is open and
which is closed.

It is for this reason that we have required all
manifolds to be manifolds with boundary and that we
have defined a sub-manifold to be the closure of the
space where its selector field is true. Open intervals
would be a problem, since they do not have a minimum
time—the limit is the point just before the interval.
Using closed manifolds with boundary ensures that the
minimum does exist.4

Note that this does mean that there will generally be
a measure-zero region in space-time (though frequently
non-zero in the spatial dimension) where values are
computed in both branches of an if statement, but
the mux operator is still well-defined for this case.
More to the point, such replication will not change
the result of any finitely-approximable function. This
concept, defined in detail in [6], says effectively that,
for any discrete approximation (e.g., implementation of
the program on a real-world collection of devices), as
the resolution of the approximation increases, the value
computed by the program should converge.

4Technically, this is slightly stronger than needed, since we
only need minimum-time points, but defining the requirement
this way is simple and elegant.

This leads us to another and more subtle condition
for well-definedness, which we shall not attempt to
enforce: although the condition specified so far ensures
that there is always some time-shifted point from where
delay may obtain values, the overall computation must
be finitely-approximable, or else there is nothing to
ensure that the value found at that point is reasonable.
Consider, for example, the expression:

(rep x 0 (- 1 x)) ;; oscillates between 0 and 1

The domains will be well-defined for this expression,
just as in our previous examples, but the value of x

depends critically on the sequence of ∆t steps that are
taken to get to a particular point. This is an example
of a function that is not finitely-approximable, since
its value does not converge as ∆t goes to zero. At
present, however, we are leaving it to the programmer
to prevent such problems, since that way lies the
intractable difficulty of general program analysis.

Closure of sub-manifolds is a change for Proto,
and implies a change in how feedback operations
are approximated, so that the update expression is
evaluated immediately after initialization. Even though
its value is discarded, this means that any feedback or
neighborhood operations within the update expression
are also initialized, rather than waiting a potentially
long time for the next round of approximation.

We can now prove well-definedness for finitely-
approximable programs that may include feedback,
using a proof similar to that of Theorem 1, above.

Lemma 2. Any finitely-approximable Proto program
composed of pointwise, restriction, and feedback
expressions is well-defined.

Proof. See Appendix A.

4.6. Neighborhood Operators

Neighborhood operators fall into three sub-categories:

• State-gathering operators produce output fields
where the value at each point is a field over a
local neighborhood in space-time. For example,
nbr collects values from neighbors and nbr-range

collects distances to neighbors.
• Pointwise field operators are much like ordinary

pointwise operators, except that the value of each
point in the input and output fields is itself a field of
values over the local neighborhood. The operators
then act pointwise on these neighborhood values.
For example, Field∼∼sqrt computes square roots
of neighborhood values.5

• Summary operators transform fields of neighbor-
hood values back into ordinary data-valued fields,

5The “Field∼∼” prefix is specific to the MIT Proto
implementation, which generates pointwise field operators from
ordinary pointwise operators, using the reserved character “∼” in
the generated name.

The Computer Journal, Vol. ??, No. ??, ????



10 J. Beal, K. Usbeck, B. Benyo

not
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speed 1

nbr

2

Field~~*

nbr

3
nbr

1

<expr>
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FIGURE 5. Neighborhood operators must all operate
on the same domain, as otherwise it is possible to
violate the pointwise well-definedness criteria within a
neighborhood. In the case shown above, well-definedness
fails in the red Field∼∼* operator instance for points near
the boundary of the sub-manifolds, when their domain-
restricted neighborhoods are multiplied by neighborhoods
gathered in the larger space.

by applying summary operators like integral or
minimum.

We will not attempt to constrain the particulars of these
neighborhoods, except to note that we assume precisely
one neighborhood n(p) to be defined for each space-
time point p in the manifold, that this neighborhood is
causal (i.e., not using points that are not accessible to p,
such as those in the future), and that the neighborhood
includes at least the point p itself.

The well-definedness criteria for state-gathering and
summary operators is the same as that for pointwise
operators: all the input fields fij and the output field fo
have the same domain m The pointwise field operators,
on the other hand, have a stronger criteria. In addition
to the normal pointwise criteria, an operator instance
o must satisfy the pointwise well-definedness criteria
for each set of neighborhood values. In other words,
for every point p ∈ m, all of the values fo(p) are
expected to be fields mapping from mfo(p)→ V , where
mf0(p) ⊆ n(p) is a closed subspace of the neighborhood.
This is likewise the case for all input fields fij (p). For
such a pointwise field operation to be well defined, the
domain of fo(p) must be equal to the domain of fij (p)
for all inputs.

This means that fields gathered in different sub-
manifolds cannot be safely combined. Consider,
for example, an innocuous-looking statement like the
following (Figure 5):

(* (nbr 3) ;; multiply the neighbor-3 field
(if (< (speed) 1) ;; depending on the device’s speed

(nbr 1) (nbr 2))) ;; by nbr field from a sub-manifold

Near the boundary between the sub-manifolds delin-
eated by (< (speed) 1), the neighborhoods gathered
within each sub-manifold are truncated, omitting values
from points in the complementary sub-manifold. The
(nbr 3) expression, however, can gather values from
the full neighborhoods. As such, well-definedness fails
for points near the boundary of the sub-manifolds, when
their domain-restricted neighborhoods are multiplied by
neighborhoods gathered in the larger space.

Preventing this is simple: we constrain the input
types of mux to non-neighborhood values, which
prevents neighborhood-valued fields from exiting an if

or feedback construct. Branching over neighborhood-
valued fields is thus only handled by Field∼∼mux,
the pointwise field analogue of mux. On the other
side, the restrict operator can be safely applied to
neighborhood-valued fields, as long as its definition is
taken to also include restricting the domains of the
neighborhoods.

The restriction on types mux and application of
restrict to neighborhood domains are changes for
Proto. By making these changes, have we lost
any expressiveness in neighborhood computations?
The differences between if-based computations and
mux-based computations can only be observed in
the behavior of neighborhood, delay, and actuator
operator instances within their sub-expressions. Proto
already prohibits neighborhoods of neighborhoods
and delay of neighborhood-valued fields. Actuation
over neighborhood-valued fields was not previously
prohibited, but this was incorrect: multiple actuator
calls in the discrete approximation have ill-defined and
unpredictable effects. Thus this definition change only
removes bugs and does not change functionality.

We can now prove well-definedness for all finitely-
approximable programs:

Theorem 3. Any finitely-approximable Proto pro-
gram composed of pointwise, restriction, feedback, and
neighborhood operators is well-defined.

Proof. See Appendix A.

5. FUNCTION CALLS IN PROTO

We now return to our original problem: to create a
model of space-time function evaluation for Proto and
to prove that well-definedness is guaranteed for all such
function calls. Previously in Proto, there has been
no explicit model of space-time function evaluation.
Instead, function evaluation was defined at the syntactic
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level, and resolved by complete inlining at compile
time because it simplified the compiler’s global-to-local
transformation. This inlining had detrimental effects
on the Proto compiler and language. First, function
inlining unnecessarily increased the size of the binary
files that were produced by the Proto compiler because
the binary representation of the function was duplicated
for every instance of its invocation. Second, function
inlining prevented Proto from taking advantage of
desirable language features, such as recursion.

We will now, however, formally define space-time
function evaluation using a substitution model, then
create a model of in-place evaluation with reference to
this substitution model. The result of all of the work on
the well-definedness of space-time functions presented
in Section 4 is that these models be elegantly simple,
both to define and to implement (as will be shown
in Section 6. As an additional benefit, the function
call semantics we develop do not differ in syntax or
expected behavior for any form of function call that
was previously supported by inlining.

5.1. Defining Functions

Before we can call functions, we must define them.
Given Proto code for a function, we produce a function
definition in three stages:

1. Create a new root manifold md for the function
definition.

2. For each input to the function, create a
“parameter” operator instance that returns the
values of that input.

3. Evaluate the expression(s) for the function body in
this environment.

This yields a function definition d = (md, {(j, fj)}, rd)
that is a tuple of three values: first, the root manifold
md that contains the sub-program for the function.
Second, a set of pairs (j, fj), one per input, which
map the jth input to parameter operator instance fj .
Finally, a return value rd that designates which field in
the function will become the source of values for the
output field of any function instance (this designation
is needed because the output cannot be determined a
priori from field/operator relations, but must be drawn
from expressions structure). Given these definitions,
we will say that an operator instance o′ is used by d if
mo′ ⊆ md.

Figure 6(a) shows an example diagram of an
increment function:

(def inc (x) ;; define an increment function (inc) that
(+ x 1)) ;; returns its argument plus one

evaluated in the expression:

(inc 3) ;; returns scalar value 4

3

inc

<expr>

P:x

+

inc

1

�

(a) Function Call

3

+

1

<expr>

�

�

�

(b) After Substitution

FIGURE 6. The substitution model of space-time function
evaluation copies the contents of a function definition in
place of the function call operator instance. We show an
example of evaluation on an irregular manifold both before
(a) and after (b) substitution.

Note that the inc function and the base expression
<expr> are each contained in an independent manifold.

5.2. Substitution Model

Consider an instance o of a function call. The output
of this function call is a field, which maps points in
manifold mo to data values. To evaluate the function
call by substitution, we begin by copying all of the
operator instances, fields, and sub-manifolds in d,
substituting mo for md anywhere that it occurs. The
only elements not copied are the parameters and their
fields: for each copied operator instance, we replace all
instances of the field output from the jth parameter,
fj , with the jth input, fij . Next, we take the function’s
return value rd = (md, fd) and replace all instances of
the output of the function call fo with fd. Finally, the
operator instance o and its output fo may be discarded,
completing the substitution.

This model is a straight-forward extension of the
substitution models commonly used in conventional
functional programming languages. The only difference
is the inclusion of the manifold in the mapping.
Figure 6(b) shows an example of substitution for the
example call of (inc 3).

5.3. In-Place Model

The converse model, of a function call in place,
follows from the substitution model in a straightforward
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(b) Substitution

<expr>

+

inc-x

P:y3 restrict4

inc-x

inc-x

(c) Safe Reference

FIGURE 7. Direct references from a function to external
fields mismatch domains (a, mismatch shown as red), even
though substitution evaluation will sometimes be correct
(b). This problem can be addressed by inserting a domain-
changing restrict operator instance on external references
(c), similarly to a restriction operator. An example of
evaluation is shown in Figure 8

manner. We begin by setting md to be equal to mo,
then copy the values of the input fields fij into their
corresponding parameter fields, fj . All of the values in
d may then be calculated, and the return values copied
from fd into fo.

The advantage of the in-place model over the
substitution model is that it allows a function to be
evaluated without modifying the program—only the
values of manifolds and fields are manipulated. We
thus choose the in-place model for dynamic evaluation
of space-time functions in Proto. We will denote such
an evaluation of function definition d in the context of
operator instance o as Ed,o, such that Ed,o(∗) is the value
of any element ∗ under evaluation. Our task is to ensure
that evaluation gives a well-defined value for every point
in every field.

5.4. References to External Variables

The model presented so far suffices for self-contained
functions of pointwise operators, like the example of inc
above. But what if the function references an external
variable? Consider this example:

(let ((x 3)) ;; define x as 3
(def inc-x (y) ;; define a function

(+ y x)) ;; that increments a scalar by x
(inc-x (inc-x 4))) ;; returns (4 + x) + x

As shown in Figure 7(a), this type of a reference is
problematic: any pointwise operator instance o that
uses an external field f as an input is not well-defined,

since the field’s domain mf is not related to function’s
root manifold md until the function is evaluated.
Previously, this problem was partially masked by the
complete inlining conducted at compile-time, but still
led to a bug in the MIT Proto implementation, where
variables within if clauses behaved differently when
referenced once or multiple times.

Our solution comes from the part of Proto designed
for domain changes: restriction expressions. References
in functions can be handled similarly, by inserting
restrict operators wherever a function definition
references an external variable (e.g., Figure 7(c)).
We also generalize well-definedness for restrict for
functions to be Ed,o′(mo) ⊆ mi0 , meaning that domains
must match only when the function is evaluated in
the context of operator o′. We can now prove that
functions incorporating restriction and reference will be
well-defined.

Theorem 4. Let d be the definition for a Proto
function, and o and o′ be operator instances. If o is
used by d then o and Ed,o′(o) are well-defined.

Proof. See Appendix A.

An unusual and important aspect of the proof for
this theorem is that correctness depends critically on
lexical scoping: it is because declaring variables and
restricting domains via if both obey the same scoping
rules, a reference to a variable can never have a larger
domain than the variable itself.

This is problematic for making truly first-class
functions, however, because it means that closures are
not possible. This is because evaluation becomes ill-
defined when the domain of the evaluation is not a
subspace of the domain of external fields referred to
in the function definition. For example, consider the
Proto expression:

;; slow is true for slow-moving devices
(let ((slow (< (speed) 1)))

;; fun-diff names a function that differs based on device
;; speed. On slow devices, add unique ID to the argument.
;; On other devices, take the square-root of the argument.
(let ((fun-diff (if slow

(let ((x (mid)))

(fun (y) (+ x y)))

sqrt)))

;; fun-all equals fun-diff of the nearest slow device.
(let ((fun-all (broadcast slow fun-diff)))

(apply fun-all 4)))) ;; Now call fun-all.

The broadcast would produce a field with the
function (fun (y) (+ x y)) at every point throughout
the root manifold. Yet the field named x is only defined
in the sub-manifold where test is true. Thus, such
passing of functions as field values cannot be permitted.

Nevertheless, many of the desirable properties of
first-class functions can be obtained through dynamic
allocation of processes (see [38]). There are also a
limited set of cases where it is safe to pass functions
as values. The challenge of obtaining the functionality
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of first-class functions in Proto is still an open
investigation, so we will not discuss it in detail at
present.

6. REFERENCE IMPLEMENTATION

We have extended MIT Proto to implement space-time
function evaluation, as well as changing the handling
of mux, feedback, and actuator operators to match
the descriptions above so that well-definedness can be
assured. This section discusses the changes to Proto
that were required to implement space-time function
evaluation and its effect on the size of the executable
binary and available language features. These changes
are currently included in the reference implementation
of Proto that is freely available at [39].

6.1. Implementation in MIT Proto

The Proto virtual machine [40] is a stack-based virtual
machine with two stacks: a “data” stack used by
most instructions and an “environment” stack used for
storing local variables. The Proto virtual machine also
contains local storage of state variables and flags. An
implementation of the Proto VM is included in MIT
Proto, along with a Proto code emitter, which linearizes
Proto programs into executable binaries.

In order to implement function evaluation for MIT
Proto, we made three key additions to the Proto VM
and the code emitter: a new FUNCALL OP instruction,
a preprocessor that uncurries external references into
extra function parameters, and support for recursion.

6.1.1. Emitting Function Calls
During emission, functions are linearized one at a time
into a sequence of Proto VM instructions. The order
in which they are linearized implies their location in
the global memory of a running Proto VM, which the
emitter tracks as it executes.

Function calls are implemented by a new FUNCALL OP

instruction, parametrized with the number of argu-
ments to be consumed. A function of k inputs takes
k + 1 arguments from the data stack. The first is a
reference to the function’s location in memory (which
the emitter obtains from its function name map). The
rest are the function arguments, which are placed into
the environment stack and accessed like any other local
variable. The program counter is then set to the start
of the function and executed, returning a value on the
data stack.

6.1.2. Uncurrying Restrictions
References to fields computed outside of a function
present a problem: if they are stored in either the
data stack or the environment stack, their depth in the
stack is determined by the context of the call. To deal
with this problem, we use a uncurrying method where
every domain-conversion operator adds an implicit

parameter to the function. This is implemented by
means of a preprocessing pass that, for each external-
reference restrict encountered, 1) adds a parameter
to the function (compound operator) definition, and
2) converts the restrict operator instance into a
parameter operator instance.

Neighborhood operators are implemented using
function calls, which transform a collection of
neighborhood operations into a single map/reduce
operation to be performed over the values of each
neighbor in turn. These present a case where this
uncurrying method does not work, because the virtual
machine implementation of the map/reduce operation
expects functions with a fixed number of inputs.
Thus, if the automatically generated functions used
to implement the neighborhood operations contain
external references (including values that are merely
not part of the neighborhood computation), the above
uncurrying method cannot be used. Instead, since this
function call is a lambda function generated by the
compiler, we can be sure that no other portion of the
program can call it and that it will only be used by the
neighborhood folding operator. We instead set up the
environment stack before the neighborhood operation,
placing all external parameters to the map/reduce
operation on the stack, so that they are available to the
function as input parameters. Since the neighborhood
operator is a single instruction, we can ensure that no
other operator will modify the environment stack until
the neighborhood is finished, at which point we remove
the parameters and continue.

6.1.3. Closure of Feedback Sub-manifolds
The sub-manifolds used by feedback operations must
be closed (See Section 4.5), to ensure well-definedness.
To implement this, we add a flag to the feedback
initialization operator when the initialization function
executes. When this flag is active, we force value of
∆t to be 0 during subsequent execution of the update
function. Once the value of the feedback variable
is stored and the feedback operation is complete, we
remove this flag and allow ∆t to be calculated as
normal.

6.1.4. Recursion
The Proto compiler previously relied on a function to
be defined before it could be used. This caused errors
when a function was called in the body of its own
definition, thus blocking recursion. Implementing late
function binding for recursion simply required inserting
an empty function “placeholder” in the function lookup
table upon its first reference. The placeholder is
replaced when the function is properly defined.

Implementing late function binding in the compiler
was necessary for adding recursion as a Proto language
feature, but the VM also needed a change to support
recursion. The first instruction of every Proto binary
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FIGURE 8. Example of evaluating the program from Figure 7(c) against an irregular manifold using in-place evaluation.
At each function call, the manifold and inputs are copied over to the function’s root manifold, the function is evaluated, and
the return value copied back.

previously specified the size of the stacks necessary for
executing the localized Proto program. However, in
the case of recursion, the depth of the stack cannot be
known until runtime and can vary on every device (e.g.,
(factorial (mid))). Therefore, we implemented a
dynamically-sized stack to store the necessary stack
memory for the virtual machine.

6.2. Effect of Function-Calls on Binary Size

Function calls should significantly reduce the size of
Proto VM binaries, since the function code need not
be duplicated for each use. We verify this empirically
by comparing the binary sizes of programs using the
new function-call method versus completely inlined
programs.

Figure 9 shows how the size of the compiled binary
scales with function size and number of calls. As
expected, function call overhead means inlining is
smaller for very small or infrequently called functions,
but when a non-trivial function is called multiple times,
the function-call strategy produces smaller binaries and
the benefits scale approximately linearly.

At present, the MIT Proto compiler decides whether
to inline based on the number of operator instances
in the function. When there are less than a fixed
threshold (default 10), the function is inlined. Our
validation experiment shows that this heuristic should
also include the number of function-calls, and this
simple improvement is planned as future work.

The next experiment compares the size of compiled
binaries for recursive functions using both the inlining
and substitution methods. We use factorial as our
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FIGURE 9. A comparison of the compiled binary size for
a varying number and size of function calls.

recursive function, implemented in Proto as:

(def factorial (n)

(if (= n 0) 1

(* n (factorial (- n 1)))))

One complication with this test was dealing with
Proto’s compile-time optimizations. When Proto
compiles the program (factorial 5), it performs all
calculations at compile time and returns the answer,
120. On the other hand, when Proto compiles the
program (factorial (mid)), all calculations must be
evaluated at runtime since that is the earliest time when
a machine’s ID is known. However, it is impossible to
inline a recursive function call whose termination point
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FIGURE 10. A comparison of the binary size for the
recursive implementation of factorial, compiled using the
inlining and substitution methods.

is unknown at compile-time. Thus, for the purposes
of this experiment, we manually construct the inlined
recursive function evaluations like so for the example,
n = 5:

(* 5 (* 4 (* 3 (* 2 (* 1 (mid))))))

Note that (mid) replaces the recursion value, which
should be 1 for a proper factorial computation to
prevent Proto from computing the result of the
expression at compile-time, however it will not affect the
size of the binary since the literal value 1 is represented
by the same number of opcodes as the (mid) expression.

Figure 10 shows how the size of the compiled binary
varies as n increases for inlined versus substituted
evaluations of (factorial n). As expected, the results
show that the substitution method produces smaller
binaries than inlining for n > 8. Where the substitution
method maintains a constant binary size for increasing
depth of recursive calls, function inlining exhibits linear
growth in the binary size. Thus, deep recursion with
function inlining produces needlessly large Proto VM
binaries.

7. DISCUSSION: IMPLICATIONS FOR
OTHER DISTRIBUTED COMPUTATION
MODELS

Finally, let us return to the question of more general
implications for distributed computing models. We
have examined the problem of distributed function
calls in an extreme environment: infinite numbers of
devices embedded throughout a continuous region of
space-time. Moreover, the computational model we
investigate is distributed at every stage: a function call
may originate on many devices, be evaluated on many
devices, and return values to many devices.

Doing so has forced us to encounter a number of
problems that might otherwise be deferred or restricted
out of the scope of a less general distributed computing

model. The challenges to well-definedness that we have
discussed for Proto are not special cases, but may be
restated as general problems for distributed computing,
not all of which currently have solutions.

From the results for Proto presented above, we
may thus identify four general challenges that any
distributed computing model must address:

• Domains for Communication and State:
Throughout Section 4 and Section 5, we found
potential problems that needed to be addressed in
ensuring that no operator ever is missing a value on
a device where it is executed. This is a problem for
all distributed computation models, as distributed
computations frequently need to be able to restrict
which devices share information and how long state
should be retained. If a computation imposes such
restrictions, then its subroutines must be limited
by the same restrictions. Otherwise, a computation
may be rendered incorrect by contamination from
stale state or by information leaking from devices
that should not be under consideration. For
functional abstraction to be possible and safe, this
context information needs to be implicitly supplied
and enforced—otherwise, a function may disobey
the restrictions of the context in which it is called.
Proto provides one solution, using the if/mux
dichotomy to manage domain restriction. This
approach does not require continuous space-time,
and thus could be adapted for other distributed
computing models as well.

• Well-Defined Branching: In Section 4.3 and
4.6, we found that branches could have ill-defined
values if variables used values from different sets
of devices. This is also a general problem, as
in any distributed computing model a branch
will in general be taken in different directions
by different devices. Any branch thus forms
a case of restriction, where the domains are
the subsets of devices evaluating each branch.
It is necessary to ensure that these restrictions
are imposed uniformly on all variables used by
computations within the branch—whether or not
the variable was initially computed within the
branch. Otherwise, incorrect behavior may arise
from interactions along the boundaries between
branch domains. In Proto, this is enforced by
means of implicit restriction on variables external
to a branch, and by applying additional limits on
restriction of neighborhood values. These methods
could be adapted for other computational models
as well.

• Initialization and Update: In Section 4.5, we
showed that in stateful computations in Proto,
it is necessary for the state update to occur at
the same time as state initialization. Failing
to do so leads to well-definedness problems in
any nested state function because of the offset
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between initialization and update. This indicates
a problem that can afflict any stateful distributed
computation. If initialization and updates do not
occur simultaneously, then nested computations
may be offset from one another, potentially
causing elements of the computation to become
problematically decoupled.

• Scoping: Scoping of distributed computations is a
critical open problem. The two standard solutions
developed for local computation, lexical scoping
and dynamic scoping, are both inadequate models
for distributed computation.
This becomes quite obvious in the context of
function closures, as discussed in Section 5.4. For
both dynamic and lexical scoping, restriction of
domain means that a variable may not have a
defined value at the location in space-time where
the function is evaluated—even if a definition of
that variable is within the syntactic scope. If a
value is transported from elsewhere (a natural fix to
attempt with lexical scoping), which of potentially
many possible sources with different values should
be used?

All of these challenges may, of course, be evaded
or ignored in any given distributed computing
model. Indeed, most existing models either include a
centralized element in their semantics (thereby evading
the necessity of facing some of these challenges) or else
leave them as a problem for the programmer—which
the programmer is no better equipped to deal with.

These problems, however, must not be ignored. They
are entangled with issues at the very foundations of
software engineering: abstraction, branches, state, and
scoping. We contend that the fact that most distributed
computing models lack good mechanisms for addressing
these issues is a major impediment to the construction
of complex distributed systems. Conversely, when these
issues are addressed, we expect the reliability, scope,
and accessibility of distributed systems engineering to
improve markedly.

8. CONTRIBUTIONS

We have formalized Proto’s model of function evalua-
tion and extended it to include in-place evaluation. This
allows significant reduction in the size of the compiled
binary and dynamic function calls (e.g., for recursion).
Our analysis of Proto semantics to ensure correctness of
function calls revealed other challenges to well-defined
program execution, which we have addressed as well.
We have upgraded MIT Proto, implementing function
calls, and verified that function calls reduce the size of
the compiled binary as expected, and have showed how
our results generalize beyond Proto to the engineering
of any distributed computation.

Our future plans capitalize on these improvements
to support higher-order functions and first-class space-
time processes. One enhancement will support higher

order functions, such as map and reduce, which use
functions in their input or output, but which do not
attempt to move them around as data. Additionally,
although we have shown that first-class functions
cannot in general be data values of a field, we believe
that space-time processes [38] may be able to provide
the same capabilities, and this is an important open
area of investigation, as noted in the previous section.
As with this work, we expect that our results will
both improve Proto and show the way for more general
improvement of distributed computing models.
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APPENDIX A. PROOFS

Appendix A.1. Well-Definedness of Proto

Lemma 1. Any Proto program composed of point-
wise and restriction expressions is well-defined.

Proof. Consider any operator instance oinO. By
assumption, either o is an instance of restrict or mux,
or another pointwise operator.

Assume that o is a pointwise operator instance
besides mux. By our syntactic assumptions, the only
way for a domain to change is via the if construct.
This means that o’s output can only differ from the
input if one of its inputs is a variable defined outside
of the innermost if construct containing it—all other
variables in scope are in the same construct and
therefore have the same domain. In this case, however,
we have defined that a restrict operator is inserted
into the reference, limiting the domain of the variable
to be equal to that of o. Thus o is well-defined.

If o is a restrict operator instance, then, by our
syntactic assumptions, it can only have been produced
by such an external variable reference. If mo is the
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domain of its output and mi0 is the domain of its
input, and there are n if constructs nested between
the definition and the reference, then let smk

be the
selector field for the kth submanifold. We then have
the following relations:

mn−1 = C({p ∈ mi0 |sn−1(p) = true})

mk−1 = C({p ∈ mk|sk−1(p) = true})

mo = C({p ∈ m1|sm0
(p) = true})

where C(∗) is the closure of set ∗. In other words, mo

is generated as a chain of successive domain reductions.
Concatenating these relations together, we have mo ⊆
mi0 , meaning that o is well-defined.

Finally, if o is a mux operator instance, then either
it was declared directly by the programmer or it was
generated as part of an if construct. If declared
directly, it behaved just as any other pointwise operator,
and is well-defined by the same logic as above. If
generated by an if construct, then by the structure
of the construct we have mo = mi0 , the domain of fi1
is guaranteed to be C({p ∈ mi0 |fi0 = true}) and the
domain of fi2 is guaranteed to be C({p ∈ mi0 |fi0 =
false}). Since C(∗) ⊇ ∗, we then know that o is well-
defined.

Thus, every operator instance is well-defined and
therefore the program as a whole is well-defined.

Lemma 2. Any finitely-approximable Proto program
composed of pointwise, restriction, and feedback
expressions is well-defined.

Proof. We begin by splitting the proof into two cases:
either o is a pointwise or restriction operation, or else o
is one of the new functions introduced: delay, dchange,
or dt.

In the first case, for pointwise or restriction
operations, the same logic as in Lemma 1 holds: because
of the syntactic constraints that we have imposed, o is
always well-defined: even when an input comes from
one of the new functions, its domain is syntactically
constrained to the same expected by the pointwise or
restriction operation that consumes it.

We next note that, although they are newly
introduced and have special meanings that take careful
implementation, the dchange and dt operations are
both pointwise functions with no inputs, and therefore
are automatically always well-defined.

This leaves only delay operators. Syntactically, we
know that the output domain mo is always equal to the
input domain mi0 , since the dchange operator is true
only on a measure zero boundary. Since we assume
the function is finitely-approximable, it remains only to
prove that the well-definedness condition:

∀δ, τ s.t. γδ(τ) ∈ mo,

γδ(τ) ∈ mv or ∃∆t > 0 s.t. γδ(τ−∆t) ∈ mi0

will necessarily hold.
Consider any point p ∈ mo. Because devices are non-

intersecting, p belongs to precisely one device δ, which
implies that there is precisely one local time τ such
that γδ(τ) = p. We now consider the interval γδ ∩mi0

where the device trajectory intersects the input domain.
By the definition of selectors, we know this interval is
closed, and includes a point with the minimum local
time τ−. If τ > τ−, then any ∆t ≤ τ−τ− will satisfy the
well-definedness condition. Otherwise, we know that
τ = τ−, and therefore the value of dchange for γδ(τ) is
true. This then implies that γδ(τ) ∈ mv, also satisfying
the well-definedness condition.

Thus, every operator instance is well-defined and
therefore the program as a whole is well-defined.

Theorem 3. Any finitely-approximable Proto pro-
gram composed of pointwise, restriction, feedback, and
neighborhood operators is well-defined.

Proof. As before, we begin by splitting the proof into
two cases: either o is one of the new neighborhood
operations, or it is a pointwise, restriction, or feedback
operation. For all pointwise, restriction, or feedback
operations, the same logic as in Lemma 2 holds: because
of the syntactic constraints and closure assumptions
that we have imposed, o is always well-defined.

If o is a state-gathering operation, it works exactly
the same as the previous case, since neighborhoods
are always assumed to be defined. Likewise, if o
is a pointwise field operation, it operates similarly,
except that we must also show that the domains of
the neighborhoods for every point p are identical for
all input fields fij and the output field fo. By the
same logic as before, we can show that the domains
of all fij and fo are the same manifold mo. By the
extended definition of restrict, this means that the
domains of the neighborhoods for every point p have
also been restricted to mo. By the input constraint on
mux, we know that the original source of these must
have been some state-gathering operation with domain
m′ ⊇ mo. No input field, therefore, can contain a point
in its neighborhood that is not in all of the others.

Finally, if o is a summary operation, it operates
similarly, except that we also need to show that the
field value for every point p in the input domain mi0 will
always contain at least one point in its neighborhood.
Ultimately, the computation leading to this input field
must have originated with state-gathering operations,
which means that the originating fields contained at
least p itself. Any well-defined pointwise field operation
will not have changed the domain; only a restriction
can have done that. By the input constraint on mux,
we know that the final neighborhood domain must be
the result of a sequence of zero or more selections on
the original domain, and by the extended definition of
restrict, we know that the neighborhood must still
contain p, or else it would not be in mi0 . Thus summary
operations are guaranteed to be well-defined as well.
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Thus, every operator instance is well-defined and
therefore the program as a whole is well-defined.

Appendix A.2. Function Evaluation

Theorem 4. Let d be the definition for a Proto
function, and o and o′ be operator instances. If o is
used by d then o and Ed,o′(o) are well-defined.

Proof. We begin by showing that o is well-defined. The
process for constructing d uses the same evaluation
methods as the process for constructing any other
Proto expression, so by the same logic Theorem 3, we
know that every operator o in d is well-defined except
for restrict operations whose input domain is not
contained within the root manifoldmd. These, however,
are external references whose well-definedness depends
on evaluation, so we may defer dealing with them until
later in the proof.

We now need to show that well-definedness of o is
preserved under evaluation. We split the remainder of
this proof into two cases: either o is a restrict, a mux,
or any other operator instance.

For any other operator instance, the fact that o
is well-defined guarantees that its input and output
fields have the same domain mo. By our syntactic
assumptions, we know that mo is either equal to the
root manifold md of d, or to some sub-manifold m′ ⊆
md. If the domain is md, then the domain of Ed,o′(fo) is
defined to be mo′ . Because o is well-defined, every input
field ij of o also has domain md, and therefore Ed,o′(ij)
is also mo′ . On the other hand, if the domain is some
other m′, then the domain Ed,o′(fo) is still m′, and by
the well-definedness of o, this is the case for every input
field ij as well. Thus, Ed,o′(o) is well-defined.

Similar logic applies if o is a mux or restrict operator
instance generated by the if construct. In either case,
defining md to be mo′ does not change the relations
between fields, so the same logic as in Lemma 1 still
applies. Thus, Ed,o′(o) is well-defined.

This leaves only the case of a restrict whose input
field has a domain mi0 6⊆ md. The question, then,
is whether the domain mi0 of the input contains the
domain Ed,o′(mfo) of the output fo when it is evaluated.
We show this by relating both to mo′ , the domain
of the function call. First, fo either has a domain
equal to the root manifold md of d, or to some sub-
manifold m′ ⊆ md. When evaluation sets md = mo′ ,
we have Ed,o′(mfo) ⊆ mo′ . Since Proto is lexically
scoped, the construct defining fi0 must also contain
expressions for both function definition d and function
call o′. Since the if construct changes domain only
on sub-expressions, this means that mo′ ⊆ mi0 . Thus
we have Ed,o′(mf ) ⊆ mi0 , fulfilling well-definedness for
restrict. Thus every operator instance is well-defined
and remains so under evaluation.
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