
On the Evaluation of Space-Time Functions
Jacob Beal

BBN Technologies
Cambridge, MA, USA, 02138
Email: jakebeal@bbn.com

Kyle Usbeck
BBN Technologies

Cambridge, MA, USA, 02138
Email: kusbeck@bbn.com

Abstract—The Proto spatial programming language abstracts
the distributed execution of programs as evaluation of space-
time functions over dynamically defined subspaces on a manifold.
Previously, however, function evaluation has always been defined
in terms of a complete inlining of expressions during compilation.
This simplified the definition of programs, at the cost of limiting
expressiveness and duplicating code in compiled binaries. In
this paper, we address these shortcomings, producing a model
of in-place function evaluation and analysis of its implications
for Proto. We have extended the MIT Proto compiler and
ProtoKernel virtual machine to implement this model, and
empirically verified the reduction of compiled binary size.

I. INTRODUCTION

Every distributed programming framework must address
the question of how to control where (and when) a process
executes. One way of controlling process execution is to view
the distributed system as a spatial computer—a collection of
inter-connected devices where the difficulty in communicating
between devices is strongly-dependent on the distance between
them. Proto [1] uses a continuous space abstraction to view the
network of devices as a discrete approximation of continuous
space. Paired with a dataflow model of computation, this
allows Proto to describe distributed algorithms in terms of
operators evaluated over continuous regions of space-time.

Previously, Proto implemented calls to user-defined func-
tions with syntactic inlining during compilation, in order to
simplify the global-to-local compilation process. Syntactic
inlining caused duplicate code in compiled binaries and pre-
vented desirable language features such as function binding
and recursive function calls. This paper addresses these short-
comings, resulting in a model of in-place function evaluation
and a reference implementation. The key contributions are:

• Formal substitution and in-place models for evaluating
functions over space-time manifolds (Section III).

• Criteria for well-defined evaluation of space-time oper-
ators, with analysis of implications for Proto, including
function evaluation (Section IV and V).

• Description of a reference implementation for space-
time function calls, along with empirical validation of
decreased binary size (Section VI).

Work partially sponsored by DARPA DSO under contract W91CRB-11-C-
0052; the views and conclusions contained in this document are those of the
authors and not DARPA or the U.S. Government.

II. BACKGROUND: PROTO

Proto [1], [2] is one of a number of programming models
that have recently been developed for spatial computers. In
Proto, programs are described in terms of dataflow field
operators and information flow over regions of continuous
space-time. Closely related to Proto are MGS [3], which
performs computation and topological surgery on the cells of a
k-dimensional CW-complex, and Regiment [4], which operates
on data streams collected from space-time regions. A number
of “pattern languages”, such as Growing Point Language [5]
and Origami Shape Language [6], also use continuous-space
abstractions, but have limited expressiveness. There are also
a number of discrete-model languages, such as TOTA [7],
which uses a viral tuple-passing model, or LDP [8] and
MELD [9], which implement a distributed logic programming
model. These discrete languages are typically more tightly tied
to particular assumptions about scale and communication than
languages that use a continuous abstraction.

In Proto, programs are described in terms of operators over
regions of continuous space, using the amorphous medium
abstraction. An amorphous medium [1] is a manifold with
a computational device at every point, where each device
can access the recent past state of a neighborhood of other
nearby devices. Computations are structured as a dataflow
graph of operators on fields (functions assigning a value to
each point in space). Careful selection of operators allows
these programs to be automatically transformed for discrete
approximation on a network of communicating devices—
typically as a ProtoKernel virtual machine [10] binary.

Proto uses four families of operators: pointwise, restriction,
feedback, and neighborhood. Pointwise operators (e.g., +,
sqrt, 3) involve neither space nor time. Restriction operators
(e.g., if) limit program execution to a subspace. Feedback op-
erators (e.g., rep) remember state and specify how it changes
over time. Neighborhood operators (e.g., nbr, int-hood)
encapsulate all interaction between devices, computing space-
time measures over neighbor state. For a full explanation
see [1] or the MIT Proto documentation and tutorial [2].

A. Formal Notation

Proto dataflow programs can be formally represented in
an equivalent manner using either mathematical notation or
dataflow diagrams. In this paper, we will use both: diagrams
for intuition and mathematical notation for analysis and proofs.

�

(a) Field

�

�
�
�
�

�
�

�

�
�

(b) Operator Instance

�

��������

(c) Manifold

�
�

�

(d) Sub-manifold

Fig. 1. Proto programs contain manifolds (spaces), fields that assign values
to every point in a manifold and operator instances that compute fields.

In either case, a Proto program may be represented as
a collection of manifolds (M), fields (F), and operator in-
stances (O), and return value associations between fields and
manifolds (R). The manifolds are the space-time region and
sub-regions1 over which the program executes. The fields are
the variables and values of the program, each field (f ∈ F)
assigning a value to every point in some region of space-time
(f : m → V , where m ∈ M and V is any data value). The
operator instances are the computations being done to produce
the fields, with each operator instance (o ∈ O) taking zero
or more input fields and producing precisely one output field
(o : i0× i1× ...× ik → fo, where i∗, fo ∈ F). Fields can also
be selectors for subspaces: given manifold m′ and a Boolean-
valued field sm ∈ F with m as its domain, we can define sub-
manifold m as {p ∈ m′|s(p) = true}, the part of m′ where
sm is true. Return values are pairs r = (m, f), associating a
root manifold m (the entire space associated with a function
or program), with some field that has m as its domain.

Figure 1 illustrates symbols for manifolds, fields, and op-
erator instances. A field is an arrow going from the operator
instance that produces it, to the instances that use it as input.
Operator instances are boxes, with inputs entering in order, left
to right, across the top edge, and output exiting the bottom.
Manifolds are large dashed-line boxes, indicating the domain
of all fields produced within them. Root manifolds are labeled
with a name, while sub-manifolds are nested inside their parent
manifold and take a selector field as input. Return values are
indicated by a star next to the field’s arrow. Figure 2(a) shows
an example diagram of an increment function:
(def inc (x) (+ x 1)) ;; define an increment function (inc) that

;; returns its argument plus one

evaluated in the expression:
(inc 3) ;; returns scalar value 4

For a Proto program to be well-defined, we require that
every field be guaranteed to have a well-defined value for every
point in its domain. Ultimately, this boils down to ensuring an
appropriate match on the domains of input and output fields
to each operator instance. For each of Proto’s four sets of
space-time operators, well-definedness has a different criteria.
The rest of the paper will examine these well-definedness

1Technically, the sub-regions may be CW-complexes, since they may
include portions of their boundary, whereas a manifold does not contain its
boundary and a manifold with boundary contains its entire boundary. In our
analysis, we will maintain this generality, but for clarity of presentation we
will refer to these regions as manifolds.

M All manifolds in a Proto program
mx The manifold associated with element x
p Point in a manifold

(x, t) Space (x) and time (t) coordinates of a point
O All operator instances in a Proto program
o Some particular operator instance
F All fields in a Proto program
fx The field associated with element x
ij The jth input field to an operator instance
sm Selector field for a sub-manifold m
rd Return value for a root manifold
d Definition of a function
V Any Proto data value

Ed,o(x) Value of x in function d evaluated for call o

TABLE I
REFERENCE TABLE FOR SYMBOLS USED IN THIS PAPER.

3

inc

<expr>

P:x

+

inc

1

(a) Function Call

3

+

1

<expr>

(b) After Substitution

Fig. 2. The substitution model of space-time function evaluation copies the
contents of a function definition in place of the function call operator instance.

criteria in detail, along with their relationship to space-time
function evaluation, in order to enable a more powerful and
less conservative model of function evaluation in Proto.

III. MODELS OF SPACE-TIME FUNCTION EVALUATION

Previously in Proto, there has been no explicit model of
space-time function evaluation. Instead, all function evalu-
ation has been defined at the syntactic level, and resolved
by complete inlining at compile time because it simplified
the compiler’s global-to-local transformation. Let us now,
however, formally define space-time function evaluation using
a substitution model, then create a model of in-place evaluation
with reference to this substitution model.

Consider an instance o of a function call. The output of
this function call is a field, which maps points in manifold
mo to data values. The function’s definition d is a set of three
things: a root manifold md that contains the sub-program for
the function, a set of pairs (j, fj), mapping the jth input to a
“parameter” operator instance fj , and a return value rd. We
will say that an operator instance o′ is used by d if mo′ ⊆ md.

We begin by copying all of the operator instances, fields,
and sub-manifolds in d, substituting mo for md anywhere that
it occurs. The only elements not copied are the parameters and
their fields: for each copied operator instance, we replace all
instances of the field output from the jth parameter, fj , with
the jth input, ij . Next, we take the function’s return value
rd = (md, fd) and replace all instances of the output of the
function call fo with fd. Finally, the operator instance o and
its output fo may be discarded, completing the substitution.

This model is a straight-forward extension of the sub-
stitution models commonly used in conventional functional

programming languages. The only difference is the inclusion
of the manifold in the mapping. Figure 2(b) shows an example
of substitution for the example call of (inc 3).

The converse model, of a function call in place, follows
from the substitution model in a straightforward manner. We
begin by setting md to be equal to mo, then copy the values of
the inputs fields ij into their corresponding parameter fields,
fj . All of the values in d may then be calculated, and the
return values copied from fd into fo.

We wish to use the in-place model for dynamic evaluation
of space-time functions in Proto. We will denote such an
evaluation of function definition d in the context of operator
instance o as Ed,o, such that Ed,o(∗) is the value of any element
∗ under evaluation. Our task is to ensure that evaluation gives
a well-defined value for every point in every field.

IV. RESTRICTION AND EXTERNAL REFERENCES

We begin with the simplest case: pointwise operators. When
a function references external variables, however, the domain
may not match. We solve this using restriction operators.

A. Pointwise Operators

Pointwise operators are the “normal” operators that each
device can execute independently, without considering space
or time. Examples include constants (e.g., 3, true), numerical
operations (e.g., +, log), sensors and actuators, and function
parameters. Because these operators act over all space-time
identically, the condition for a pointwise operator instance o
to produce a well-defined field is that every input field ij and
the output field fo, must all have the same manifold m as their
domain (excepting the mux operator, discussed below).

We can prove that well-defined pointwise operators in func-
tions will remain well-defined when the function is evaluated:

Theorem 1. If o is a well-defined pointwise operator instance
used by function definition d, then Ed,o′(o) is also well-defined
for any evaluation of d in the context of operator instance o′.

Proof: The output field fo of operator instance o has a
domain either equal to the root manifold md of d, or to some
sub-manifold m′ ⊆ md. If the domain is md, then the domain
of Ed,o′(fo) is defined to be mo′ . Because o is well-defined,
every input field ij of o also has domain md, and therefore
Ed,o′(ij) is also mo′ . On the other hand, if the domain is
some other m′, then the domain Ed,o′(fo) is still m′, and by
the well-definedness of o, this is the case for every input field
ij as well. Thus, in all cases Ed,o′(o) is well-defined.

This suffices for self-contained functions of pointwise oper-
ators, like the example of inc above. But what if the function
references an external variable? Consider this example:
(let ((x 3)) ;; define x as 3
(def inc-x (y) (+ y x)) ;; function: increments a scalar by x
(inc-x (inc-x 4))) ;; returns (4 + x) + x

As shown in Figure 3(a), this type of a reference is
problematic: any pointwise operator instance o that uses an
external field f as an input is not well-defined, since the
field’s domain mf is not related to function’s root manifold

md until the function is evaluated. Previously, this problem
was partially masked by the complete inlining conducted at
compile-time, but failing to notice and handle it caused a bug
in the MIT Proto implementation, where variables within if
clauses behaved differently when referenced once or multiple
times. Our solution comes from the part of Proto designed for
domain changes: restriction expressions.

B. Restriction Operators

Restriction expressions create a sub-manifold and evaluate
a target expression in that sub-manifold. For example:
(restrict (sqrt 3) ;; compute square root of 3

(< (speed) 1)) ;; on devices moving slower than 1 m/s

selects a sub-manifold of slow-moving devices and computes
the square root of 3 across that sub-manifold. Such an expres-
sion, however, cannot directly use fields from or be used as an
input by operator instances in different sub-manifolds, as the
well-definedness condition would be violated (Figure 3(c)).

This is resolved by means of a multiplexing operator, mux,
with a relaxed well-definedness condition. An instance o of the
mux operator takes three inputs. The range of i0 is a Boolean:
for each point p in its domain mi0 where i0(p) is true, fo(p) =
i1(p); otherwise, fo(p) = i2(p). We can thus relax the well-
definedness condition for mux to be:

mi0 = mo

mi1 ⊇ {p ∈ mi0 |i0(p) = true}
mi2 ⊇ {p ∈ mi0 |i0(p) = false}

In other words: any points whose values will not be used need
not be part of the domain of the second and third inputs.

We disallow the programmer from using restriction directly,
instead using it in an if syntactic construct of form:

(if test true-expression false-expression)
This form creates two precisely complementary sub-manifolds,
then combines the results of their expressions with a mux using
the same selector field, following the template in Figure 3(d).

When an if expression refers to an external variable, as in:
(let ((x 7)) ;; define x as 7

(if (< (speed) 1) ;; if device is moving slower than 1 m/s
3 (sqrt x))) ;; return 3. Otherwise, return sqrt of x

then a restrict operator instance is inserted into the ref-
erence, limiting its domain (Figure 3(e)). This operator takes
one input i0, and produces an output fo whose value is equal
to i0, but whose domain may be smaller. The well-definedness
condition for restrict is simply that mo ⊆ mi0 , which is
guaranteed by lexical scoping and the if construct.

C. References to External Variables

References in functions can be handled similarly, by in-
serting restrict operators wherever a function definition
references an external variable (e.g., Figure 3(f)). We also
generalize well-definedness for restrict for functions:
Ed,o′(mo) ⊆ mi0 when the function is evaluated in the context
of operator o′. We can now prove that functions incorporating
restriction and reference will be well-defined.

4

<expr>

+

inc-x

P:y

inc-x

3

inc-x

(a) Bad Reference

4

<expr>

+

3

+

(b) Substitution

<

sqrt

sin

speed 1

7

<expr>

(c) Bad Restriction

not

mux

����
��������	

����
��������	

����

(d) if template

not

mux

<

speed 1

3
sqrt

7

restrict

<expr>

(e) Safe Restriction Example

<expr>

+

inc-x

P:y3 restrict4

inc-x

inc-x

(f) Safe Reference

Fig. 3. Direct references from a function to external fields mismatch domains (a, mismatch shown as red), even though substitution evaluation will sometimes
be correct (b). Restrictions face a similar problem (c), which is addressed by a syntactic form (d) that ensures complementary sub-manifolds and inserts a
domain-changing restrict operator instance on external references (e). Similar insertion for function references (f) is valid under lexically scoping.

Theorem 2. Let d be the definition for a function using only
pointwise and restriction expressions, and o and o′ be operator
instances. If o is used by d then o and Ed,o′(o) are well-defined.

Proof: If o is used by d, then by assumption either o is an
instance of restrict, mux, or another pointwise operator.
If o is a pointwise operator other than mux, then by our
syntactic assumptions, all of its inputs and outputs must have
the same domain. Thus, o is well-defined and, by Theorem 1,
its evaluation must be as well. A mux is the same, unless it
was generated by an if, in which case the synactic construct
still guarantees that it is well-defined and, by the same logic
as Theorem 1, will remain so when evaluated. Likewise, the
if construct guarantees that a restrict is well-defined if
its input i0 comes from another operator instance used by d.

This leaves only the case a restrict whose input field
has a domain mi0 6⊆ md. The question, then, is whether the
domain mi0 of the input contains the domain Ed,o′(mfo) of
the output fo when it is evaluated. We show this by relating
both to mo′ , the domain of the function call. First, fo either
has a domain equal to the root manifold md of d, or to some
sub-manifold m′ ⊆ md. When evaluation sets md = mo′ ,
we have Ed,o′(mfo) ⊆ mo′ . Since Proto is lexically scoped,
the construct defining i0 must also contain expressions for
both function definition d and function call o′. Since the if
construct changes domain only on sub-expressions, this means
that mo′ ⊆ mi0 . Thus we have Ed,o′(mf) ⊆ mi0 , fulfilling
well-definedness for restrict, and thus every operator
instance is well-defined and remains so under evaluation.

Note that the use of lexical scoping in the proof implies that
space-time functions cannot, in general, be first-class objects—
at least not in the sense of being values of a field. This is
because evaluation becomes ill-defined when the domain of the
evaluation is not a subspace of the domain of external fields
referred to in the function definition. For example, consider
the Proto expression:
(let ((test (< (speed) 1))) ;; If a device is moving slowly
(let ((fun-diff ;; fun-diff names a first-class function, else the
(if test (fun (y) (+ x y)) sqrt))) ;; ‘sqrt’ function.
(let ((fun-all ;; fun-all names the nearest slow-moving

(broadcast test fun-diff))) ;; device’s fun-diff.
(apply fun-all 4)))) ;; Now call fun-all.

The broadcast would produce a field with the function
(fun (y) (+ x y)) at every point throughout the root

not

mux

dchange

dt
0

+

delay

<expr>

(a) Feedback

not

mux

<

speed 1

nbr

2

Field~~*

nbr

3 nbr

1

<expr>

(b) Neighborhood

Fig. 4. Feedback syntactic forms ensure that delay operators are well
defined (a). Operators over neighborhood values may not be well defined if
restricted domains are combined (b).

manifold. Yet the field named x is only defined in the sub-
manifold where test is true. Thus, such passing of functions
as field values cannot be permitted.

Some of the desirable properties of first-class functions
can be obtained through dynamic allocation of processes
(see [11]). There are also a limited set of cases where it is
safe to pass functions as values. The challenge of obtaining
the functionality of first-class functions in Proto is still an open
investigation, so we will not discuss it in detail at present.

V. FEEDBACK AND NEIGHBORHOOD OPERATORS

The other two families of Proto operators, feedback and
neighborhood, compute with values from more than one point
in space-time. The conditions for these operator instances
being well-defined are thus about ensuring that domains of
the input include all of the points needed.

A. Feedback Operators

State is created in Proto through state evolution functions,
which specify an initial value and its evolution over time. This
is implemented using a feedback loop with a delay operator,
which time-shifts values across an arbitrarily small positive
time ∆t. For example, Figure 4(a) shows a simple timer:
(rep v 0 ;; initialize v to 0

(+ v (dt))) ;; update v by adding the time delta between steps

where v is the state variable, 0 is its initial value, and
the update increases its value by time elapsed (measured

by the dt operator). This allows feedback loops to specify
general continuous-time state evolution functions, including
discrete valued functions where there is not always a derivative
(see [12]).

Because manifolds may have different spatial scope at
different points in time, the criteria for a delay operator o
to be well-defined is similar to that of restrict: all of the
points in the output field fo must have corresponding time-
shifted points in the input field i0. Since the value of ∆t is
not resolved at compile-time, to be well-defined, it must be
provable that some ∆t can exist:

∃∆t > 0 s.t. ∀(x, t) ∈ mo, (x, t−∆t) ∈ mi0

where mo and mi0 are the domains of fo and i0 and where
(x, t) is a point decomposed into its space coordinates x and
time coordinate t.

The intuition of the implications of this definition are
simple: the input domain for a delay must include the initial
values of the state, but the output domain must not. We
thus introduce a pointwise operator dchange that selects the
minimum-time surfaces of a manifold, and use a restriction
construct, similar to if, in which the initialization expression
is evaluated on the minimum-time surfaces and the update
expression is evaluated elsewhere.

Proof that this ensures delay operator instances are always
well-defined, including under function evaluation, can be de-
rived similarly to Theorem 2, above, but is notationally much
more complicated, so we do not present it here.

B. Neighborhood Operators

Neighborhood operators fall into three sub-categories:

• State-gathering operators produce output fields where the
value at each point is a field over a local neighborhood in
space-time. For example, nbr collects values from neigh-
bors and nbr-range collects distances to neighbors.

• Pointwise field operators are like ordinary pointwise
operators, except they operate over the values in the field
that is the value of each point in the domain. For example,
Field∼∼* computes products of neighborhood values.2

• Summary operators transform fields of neighborhood
values back into ordinary data-valued fields, by applying
summary operators like integral or minimum.

The well-definedness criteria for state-gathering and sum-
mary operators is just like that for pointwise operators. The
pointwise field operators, on the other hand, have a stronger
criteria. In addition to the normal pointwise criteria (the input
fields ij and the output field fo have the same domain m), an
operator instance o must satisfy the pointwise well-definedness
criteria for each set of neighborhood values. In other words,
for every point p ∈ m, the domain of fo(p) must be equal to
the domain of ij(p) for all inputs.

2The “Field∼∼” prefix is specific to the MIT Proto implementation,
which generates pointwise field operators from ordinary pointwise operators,
using the reserved character “∼” in the generated name.

This means that fields gathered in different sub-manifolds
cannot be safely combined. Consider, for example, an
innocuous-looking statement like the following (Figure 4(b)):
(* (nbr 3) ;; multiply the neighbor-3 field

(if (< (speed) 1) ;; depending on the device’s speed
(nbr 1) (nbr 2))) ;; by a nbr field from a sub-manifold

Near the boundary between the sub-manifolds delineated by
(< (speed) 1), the neighborhoods gathered within each
sub-manifold are truncated, omitting values from points in
the complementary sub-manifold. The (nbr 3) expression,
however, can gather values from the full neighborhoods. As
such, well-definedness fails for points near the boundary of the
sub-manifolds, when their domain-restricted neighborhoods
are multiplied by neighborhoods gathered in the larger space.

The solution is simple: restrict the input types of
mux to non-neighborhood values, preventing neighborhood-
valued fields from exiting an if construct. Branching
over neighborhood-valued fields is thus only handled by
Field∼∼mux, the pointwise field analogue of mux. On the
other side, the restrict operator can be safely applied
to neighborhood-valued fields, as long as its definition is
extended to restrict the domains of the neighborhoods as well.

By making these changes, have we lost any expressiveness
in neighborhood computations? The differences between if-
based computations and mux-based computations are only
observed in the behavior of neighborhood, delay, and ac-
tuator operator instances within their sub-expressions. Proto
already prohibits neighborhoods of neighborhoods and delay
of neighborhood-valued fields. Actuation over neighborhood-
valued fields was not previously prohibited, but this was
incorrect: multiple actuator calls in the discrete approximation
has unpredictable effects. We have now added type-checking
that eliminates this bug in the MIT Proto implementation.

As with feedback operators, we do not present the proof of
well-definedness, as it is lengthy but similar to Theorem 2.

VI. REFERENCE IMPLEMENTATION

We have extended MIT Proto to implement space-time
function evaluation, as well as changing the handling of mux,
feedback, and actuator operators to match the descriptions
above so that well-definedness can be assured. This section
discusses the changes required to implement function evalua-
tion in Proto and its effect on the size of the executable binary.

A. Implementation in MIT Proto

The ProtoKernel virtual machine [10] is a stack-based
virtual machine with two stacks: a “data” stack used by most
instructions and an “environment” stack used for storing local
variables. An implementation of ProtoKernel is included in
MIT Proto, along with a ProtoKernel code emitter, which lin-
earizes Proto programs into executable ProtoKernel binaries.

In order to implement function evaluation for MIT Proto, we
made two key additions to ProtoKernel and the code emitter:
a new FUNCALL_OP instruction, and a preprocessor that “de-
currys” external references into extra function parameters.

1) Emitting Function Calls: During emission, functions
are linearized one at a time into a sequence of ProtoKernel
instructions. The order in which they are linearized implies
their location in the global memory of a running ProtoKernel
VM, which the emitter tracks as it executes.

Function calls are implemented by a new FUNCALL_OP
instruction, parameterized with the number of arguments to be
consumed. A function of k inputs takes k+ 1 arguments from
the data stack. The first is a reference to the function’s location
in memory (which the emitter obtains from its function name
map). The rest are the function arguments, which are placed
into the environment stack and accessed like any other local
variable. The program counter is then set to the start of the
function and executed, returning a value on the data stack.

2) “De-currying” Restrictions: References to fields com-
puted outside of a function present a problem: if they are stored
in either the data stack or the environment stack, their depth
in the stack is determined by the context of the call. To deal
with this problem, we use a “de-currying” method where every
domain-conversion operator adds an implicit parameter to the
function. This is implemented by means of a preprocessing
pass that, for each external-reference restrict encountered,
1) adds a parameter to the function (compound operator)
definition, and 2) converts the restrict operator instance
into a parameter operator instance.

B. Effect of Function-Calls on Binary Size

Function calls should significantly reduce the size of Pro-
toKernel binaries, since the function code need not be dupli-
cated for each use. We verify this empirically by comparing the
binary sizes of programs using the new function-call method
versus completely inlined programs.

Figure 5 shows how the size of the compiled binary scales
with function size and number of calls. As expected, function
call overhead means inlining is smaller for very small or
infrequently called functions, but when a non-trivial function
is called multiple times, the function-call strategy produces
smaller binaries and the benefits scale approximately linearly.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

S
iz

e
of

 B
in

ar
y

(in
 b

yt
es

)

Number of Function Calls

4 Instructions Inlined
6 Instructions Inlined
8 Instructions Inlined

10 Instructions Inlined
12 Instructions Inlined

4 Instruction Function Call
6 Instruction Function Call
8 Instruction Function Call

10 Instruction Function Call
12 Instruction Function Call

Fig. 5. Function calls (blue) add overhead, but scale better than inlined (red).

At present, the MIT Proto compiler decides whether to
inline based on the number of operator instances in the
function. When there are less than a fixed threshold (default
10), the function is inlined. Our validation experiment shows
that this heuristic should also include the number of function-
calls, and this simple improvement is planned as future work.

VII. CONTRIBUTIONS

We have formalized Proto’s model of function evaluation
and extended it to include in-place evaluation. This allows
significant reduction in the size of the compiled binary and
dynamic function calls (e.g., for recursion). Our analysis of
Proto semantics to ensure correctness of function calls also
turned up other challenges to well-defined program execution,
which we have addressed as well. We have upgraded MIT
Proto, implementing function calls, and verified that function
calls reduce the size of the compiled binary as expected.

Our future plans capitalize on these improvements to sup-
port general recursion and first-class space-time processes.
Currently, ProtoKernel uses a static memory allocation policy
where global, environment, and stack sizes are computed at
compile time. This restriction prevents recursion from working
when any neighborhood or feedback operators are involved.
Future work will enable ProtoKernel to allocate memory at
runtime and therefore support extra language features. Simi-
larly, although we have shown that first-class functions cannot
in general be data values of a field, we believe that space-time
processes [11] may be able to provide the same capabilities.

REFERENCES

[1] J. Beal and J. Bachrach, “Infrastructure for engineered emergence in
sensor/actuator networks,” IEEE Intelligent Systems, vol. 21, pp. 10–19,
March/April 2006.

[2] “MIT Proto,” software available at http://proto.bbn.com/, Re-
trieved November 22, 2010.

[3] J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz, “Compu-
tational models for integrative and developmental biology,” Univerite
d’Evry, LaMI, Tech. Rep. 72-2002, 2002.

[4] R. Newton and M. Welsh, “Region streams: Functional macroprogram-
ming for sensor networks,” in First International Workshop on Data
Management for Sensor Networks (DMSN), Aug. 2004.

[5] D. Coore, “Botanical computing: A developmental approach to gen-
erating inter connect topologies on an amorphous computer,” Ph.D.
dissertation, MIT, Cambridge, MA, USA, 1999.

[6] R. Nagpal, “Programmable self-assembly: Constructing global shape
using biologically-inspired local interactions and origami mathematics,”
Ph.D. dissertation, MIT, Cambridge, MA, USA, 2001.

[7] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: the TOTA approach,” ACM Transactions on
Software Engineering and Methodology, 2008.

[8] M. D. Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and P. Pillai,
“Programming modular robots with locally distributed predicates,” in
IEEE International Conference on Robotics and Automation (ICRA ’08),
2008.

[9] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and
P. Pillai, “Meld: A declarative approach to programming ensembles,”
in IEEE International Conference on Intelligent Robots and Systems
(IROS ’07), 2007.

[10] J. Bachrach and J. Beal, “Building spatial computers,” MIT, Tech. Rep.
MIT-CSAIL-TR-2007-017, March 2007.

[11] J. Beal, “Dynamically defined processes for spatial computers,” in
Spatial Computing Workshop, 2009.

[12] J. Bachrach, J. Beal, and T. Fujiwara, “Continuous space-time semantics
allow adaptive program execution,” in IEEE SASO 2007, July 2007.

